Connect with us

News

SpaceX Falcon 9 rocket rolls to launch pad earlier than usual for next Starlink mission

Pictured here in January 2020, Falcon 9 booster B1051 is scheduled to attempt its fourth launch no earlier than April 23rd. (Richard Angle)

Published

on

A SpaceX Falcon 9 rocket has rolled to the launch pad a full week before the company’s next 60-satellite Starlink launch is scheduled, much earlier than usual compared to all recent Starlink missions.

Thrice-flown Falcon 9 booster B1051 will be supporting the internal SpaceX launch, serving as a partial return-to-flight mission after a Falcon 9 rocket suffered its first in-flight engine failure since 2012 less than a month ago. Recently discussed on Teslarati, prime customer NASA – perhaps just a month away from its first astronaut launch on a SpaceX Crew Dragon and Falcon 9 – has to outwardly worry about the impact of Falcon 9’s March 18th engine failure. Most recently, administrator Jim Bridenstine signaled that SpaceX had already effectively determined the failure mode enough for him to state that it’s “not going to impact our commercial crew launch.”

Likely implying that the engine failure was closely related to the fact that Falcon 9 booster B1048 was on its fifth launch, a first for SpaceX, a successful Starlink launch next week would likely alleviate most remaining customer concerns. Delayed a week from April 16th to 23rd, the rocket’s move to the launch pad indicates that SpaceX may be exerting significantly more caution on this particular Starlink launch, a sign that the company is unsurprisingly prioritizing a fully-successful mission over speed.

Like the late Falcon 9 booster B1048, pictured here in March 2020, B1051 is scheduled to perform a static fire test at Pad 39A within the next few days. (Richard Angle)

Excluding delays, recent SpaceX Starlink launches have seen their Falcon 9 rockets roll out to the launch pad and perform their preflight static fire tests just a few days (or less) before liftoff. To achieve that, SpaceX – for the first time since September 2016 – has begun installing payloads (its own Starlink satellites) on top of Falcon 9 before their static fires. Known as Starlink V1 L6 or Starlink-6 for short, that also remains true for this particular mission – SpaceX’s 6th Starlink launch since November 2019 and 7th launch overall.

Easily visible in Spaceflight Now’s live views of Falcon 9’s roll to the launch pad, the rocket already has a payload fairing – presumably full of 60 Starlink satellites – installed atop its second stage. The fact that SpaceX has rolled the fully-integrated Starlink-6 rocket to the launch pad a full week before its planned liftoff is thus at least a little curious.

Advertisement
SpaceX has already launched four Starlink missions in 2020, averaging roughly one launch every three weeks if Starlink-6 is completed next week. (SpaceX)

The presence of a payload fairing effectively rules out an issue with Starlink satellites as the cause of the delay, while it also makes it much less likely – but not impossible – that any bugs were found in Falcon 9’s first or second stages. Were any such issues discovered, it’s hard to imagine that SpaceX would have chosen to roll the fully-integrated rocket to the launch pad, as any hardware issues would almost certainly require a return to the hangar and some level of disassembly.

As such, the reason for the rocket’s relatively early move to the launch pad is a bit of a mystery. Most likely, as briefly noted, SpaceX is simply taking a more cautious approach to this launch as a result of challenges faced in February and March. The use of Pad 39A – normally dedicated to Falcon Heavy and Crew Dragon launches – also raises the stakes a bit, as a vehicle failure on or around the launch pad would inherently result in major delays to NASA’s critical Commercial Crew Program astronaut launches.

Falcon 9 B1051’s fourth launch carries unique importance due to a recent in-flight engine failure. (SpaceX)

Either way, SpaceX’s Starlink-6 mission is set to be uniquely high-profile. According to launch photographer Ben Cooper, Falcon 9 is scheduled to launch no earlier than 3:16 pm EDT (19:16 UTC) on Thursday, April 23rd. Stay tuned for updates as the rocket approaches its static fire test.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Continue Reading

Elon Musk

Elon Musk’s xAI celebrates nearly 3,000 headcount at Memphis site

The update came in a post from the xAI Memphis account on social media platform X.

Published

on

Credit: xAI Memphis

xAI has announced that it now employs nearly 3,000 people in Memphis, marking more than two years of local presence in the city amid the company’s supercomputing efforts. 

The update came in a post from the xAI Memphis account on social media platform X.

In a post on X, xAI’s Memphis branch stated it has been part of the community for over two years and now employs “almost 3,000 locally to help power Grok.” The post was accompanied by a photo of the xAI Memphis team posing for a rather fun selfie. 

“xAI is proud to be a member of the Memphis community for over two years. We now employ almost 3,000 locally to help power @Grok. From electricians to engineers, cooks to construction — we’re grateful for everyone on our team!” the xAI Memphis’ official X account wrote. 

Advertisement

xAI’s Memphis facilities are home to Grok’s foundational supercomputing infrastructure, including Colossus, a large-scale AI training cluster designed to support the company’s advanced models. The site, located in South Memphis, was announced in 2024 as the home of one of the world’s largest AI compute facilities.

The first phase of Colossus was built out in record time, reaching its initial 100,000 GPU operational status in just 122 days. Industry experts such as Nvidia CEO Jensen Huang noted that this was significantly faster than the typical 2-to-4-year timeline for similar projects.

xAI chose Memphis for its supercomputing operations because of the city’s central location, skilled workforce, and existing industrial infrastructure, as per the company’s statements about its commitment to the region. The initiative aims to create hundreds of permanent jobs, partner with local businesses, and contribute to economic and educational efforts across the area.

Colossus is intended to support a full training pipeline for Grok and future models, with xAI planning to scale the site to millions of GPUs.

Advertisement
Continue Reading