Connect with us

News

SpaceX eyes several Falcon 9 reusability firsts on 25th launch this year

Published

on

SpaceX says that it’s successfully static fired its second-most flight-proven Falcon 9 booster ahead of the company’s 25th launch this year, potentially marking several reusability firsts.

SpaceX’s routine static fire tweet confirmed that a Falcon 9 rocket is now ready to support the launch of Sirius XM’s SXM-7 radio satellite no earlier than (NET) 11:20 am EST (UTC-5), Friday, December 11th. A follow-up tweet further confirmed that Falcon 9 booster B1051 – the second to ever complete six orbital-class launches and landings – is scheduled to support the mission on its seventh flight less than three weeks after Falcon 9 B1049 became the first to do so.

Falcon 9 booster B1051 lifts off from Pad 39A with 60 new Starlink satellites on its sixth flight. (SpaceX)

Further, SpaceX says that its SXM-7 launch will reuse half of the payload fairing first flown (and first caught) in July, making SXM-7 the first commercial launch ever to feature (part of) a flight-proven fairing. Impressively, the fact that launch customer and satellite manufacturer Maxar has signed off on the use of a flight-proven Falcon fairing essentially confirms that SpaceX has been fully successful in its fairing recovery and reuse efforts.

Pictured on their decks shortly after returning to port, one of the two fairing halves caught by Ms. Tree and Ms. Chief on July 20th will be flown again on SXM-7. (Richard Angle)

For reasons both essential and traditional, most modern satellites are built inside certified cleanroom facilities, spending the entirety of their suborbital lives – launch included – in meticulously controlled environments. That expectation of extreme cleanliness extends inside the launch vehicle fairing, posing a major hurdle for any attempt to reuse those fairings on similar missions. SpaceX has sidestepped the challenge of fairing contamination by simultaneously building its own Starlink satellites to tolerate a less than surgical environment inside a fairing and working to perfect fairing catches.

By catching fairings in giant shipborne nets, SpaceX aimed to avoid a vast majority of the contamination caused by recovering fairing halves from the ocean surface. Maxar’s acceptance of exactly that kind of caught fairing half on a commercial satellite launch all but confirms that SpaceX has found a cost-effective solution for commercial-grade fairing reuse, likely giving willing customers yet another way to cut the cost of launch in the near future.

Meanwhile and even more significantly, SXM-7 will also mark the first time that SpaceX has reused a four-, five-, or six-flight Falcon 9 booster on a fully commercial launch. That surprising leapfrog means that at least one major satellite manufacturer, satellite operator, and launch insurer has become so confident in SpaceX booster reuse that any perceived risk added by jumping from a three-flight to a six-flight booster pales in comparison to the (still fairly minor) cost of waiting a month or two for a less-flown Falcon 9.

B1051 sails back to port on October 21st after its sixth successful launch. (Richard Angle)

Adding to the pile of milestones, Falcon 9 booster B1051 will have spent just 54 days between its sixth and seventh flights if SXM-7 launches on time, making it the third fastest turnaround in SpaceX history. In other words, SpaceX will prove that six-flight Falcon boosters are just as fast and easy to refurbish as boosters with just two (B1058) or three (B1060) flights under their belt.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times,” Tesla stated. “The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory.”

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The upgrade follows earlier phases of Tesla’s self-funded shuttle program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff rely on public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow non-employees to ride the shuttle free of charge, making it a broader mobility option for the region as the site’s output and workforce continue to scale.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading