Connect with us

News

SpaceX delays Starlink doubleheader

Published

on

Update: To “allow additional time for pre-launch checkouts,” SpaceX has delayed Starlink 2-6 from January 30th to 8:15 am PST (16:15 UTC), January 31st and Starlink 5-3 from February 1st to February 2nd.

A pair of SpaceX Falcon 9 rockets are on track to round out the first month of 2023 and kick off the second with a Starlink double-header.

“To complete pre-launch checkouts,” SpaceX delayed its last launch of the month by 24 hours. The first Falcon 9 rocket will launch Starlink 2-6 and a D-Orbit rideshare payload no earlier than 8:29 am PST (16:29 UTC) on Monday, January 30th. The mission will lift off from SpaceX’s Vandenberg Space Force Base (VSFB) SLC-4E pad and head southeast, skirting the California and Mexico coast. In case of bad weather or a minor technical issue, a backup window is available at 12:31 pm PST.

As few as 35.5 or 39.5 hours later, a second Falcon 9 rocket will lift off from SpaceX’s Florida-based NASA Kennedy Space Center LC-39A pad around 3:02 am EST (08:02 UTC) on Tuesday, February 1st.

Starlink 2-6

Kicking off the pair, Starlink 2-6 will be SpaceX’s ninth Starlink rideshare mission since the company began manifesting third-party payloads on its internet satellite launches in June 2020. Falcon 9 will launch the mission’s main payload – a batch of 49 Starlink V1.5 satellites – to a semi-polar orbit that will see them cross Earth’s equator at an angle of 70 degrees. Ordinarily, the mission would carry 51 Starlinks, but SpaceX has removed a pair of satellites to make room for Italian space logistics company D-Orbit’s ION SCV009 spacecraft.

Advertisement
-->

ION weighs around 160 kilograms (350 lb) on its own and is roughly the size of a large oven. D-Orbit designed the spacecraft to host fixed payloads and deploy rideshare satellites in orbit. It also has a propulsion system that allows it to provide “last-mile delivery services,” offering rideshare customers the ability to tweak the orbit their satellite ends up in. Space tugs like ION aim to give satellite owners some of the benefits of a dedicated rocket launch (custom orbit selection in particular) while retaining most of the cost savings rideshare launches enable.

A render of a D-Orbit ION vehicle.

After reaching orbit, Falcon 9 will deploy ION first, use thrusters to spin itself end over end, and then release all 49 Starlink satellites simultaneously. The spinning stage’s centrifugal force causes the satellite stack to naturally spread out within several hours. The satellites then use reaction wheels to stabilize their orientation, deploy solar panels to begin charging their batteries, and eventually use ion thrusters to climb to operational orbits.

ION SCV009 will attempt to test a new satellite separation system built by EBAD and demonstrate its ability to operate in very low Earth orbit (VLEO). The spacecraft will potentially lower itself to an altitude of 270 kilometers (170 mi).

Starlink 5-3

Starlink 5-3 will carry no rideshare payloads and will likely be nearly identical to Starlink 5-2, which SpaceX successfully launched on January 26th. The latest mission’s stack of 56 Starlink V1.5 satellites weighed 17.4 tons and was the heaviest payload SpaceX has ever launched. Starlink 5-3 is targeting the same orbit and will likely also carry 56 satellites.

Pad 39A last supported SpaceX’s fifth Falcon Heavy launch on January 15th and has been quickly converted back to its single-core Falcon 9 configuration for Starlink 5-3. After the Starlink mission, Pad 39A has at least two Dragon spacecraft launches scheduled before SpaceX will need to convert it back to a triple-booster configuration for Falcon Heavy’s sixth launch.

SpaceX is scheduled to launch Crew Dragon’s Crew-6 astronaut transport mission no earlier than February 26th, and Cargo Dragon’s Spx-27 cargo delivery mission on March 11th. Falcon Heavy is scheduled to launch the giant ViaSat-3 communications satellite no earlier than March 24th.

Advertisement
-->

Tune in below around 8:25 am PST (16:25 UTC) to watch SpaceX Starlink 2-6 launch live.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla takes a step towards removal of Robotaxi service’s safety drivers

Tesla watchers are speculating that the implementation of in-camera data sharing could be a step towards the removal of the Robotaxi service’s safety drivers.

Published

on

Credit: Tesla

Tesla appears to be preparing for the eventual removal of its Robotaxi service’s safety drivers. 

This was hinted at in a recent de-compile of the Robotaxi App’s version 25.11.5, which was shared on social media platform X. 

In-cabin analytics

As per Tesla software tracker @Tesla_App_iOS, the latest update to the Robotaxi app featured several improvements. These include Live Screen Sharing, as well as a feature that would allow Tesla to access video and audio inside the vehicle. 

According to the software tracker, a new prompt has been added to the Robotaxi App that requests user consent for enhanced in-cabin data sharing, which comprise Cabin Camera Analytics and Sound Detection Analytics. Once accepted, Tesla would be able to retrieve video and audio data from the Robotaxi’s cabin. 

Video and audio sharing

A screenshot posted by the software tracker on X showed that Cabin Camera Analytics is used to improve the intelligence of features like request support. Tesla has not explained exactly how the feature will be implemented, though this might mean that the in-cabin camera may be used to view and analyze the status of passengers when remote agents are contacted.

Advertisement
-->

Sound Detection Analytics is expected to be used to improve the intelligence of features like siren recognition. This suggests that Robotaxis will always be actively listening for emergency vehicle sirens to improve how the system responds to them. Tesla, however, also maintained that data collected by Robotaxis will be anonymous. In-cabin data will not be linked to users unless they are needed for a safety event or a support request. 

Tesla watchers are speculating that the implementation of in-camera data sharing could be a step towards the removal of the Robotaxi service’s safety drivers. With Tesla able to access video and audio feeds from Robotaxis, after all, users can get assistance even if they are alone in the driverless vehicle. 

Continue Reading

Investor's Corner

Mizuho keeps Tesla (TSLA) “Outperform” rating but lowers price target

As per the Mizuho analyst, upcoming changes to EV incentives in the U.S. and China could affect Tesla’s unit growth more than previously expected.

Published

on

Credit: Tesla China

Mizuho analyst Vijay Rakesh lowered Tesla’s (NASDAQ:TSLA) price target to $475 from $485, citing potential 2026 EV subsidy cuts in the U.S. and China that could pressure deliveries. The firm maintained its Outperform rating for the electric vehicle maker, however. 

As per the Mizuho analyst, upcoming changes to EV incentives in the U.S. and China could affect Tesla’s unit growth more than previously expected. The U.S. accounted for roughly 37% of Tesla’s third-quarter 2025 sales, while China represented about 34%, making both markets highly sensitive to policy shifts. Potential 50% cuts to Chinese subsidies and reduced U.S. incentives affected the firm’s outlook.

With those pressures factored in, the firm now expects Tesla to deliver 1.75 million vehicles in 2026 and 2 million in 2027, slightly below consensus estimates of 1.82 million and 2.15 million, respectively. The analyst was cautiously optimistic, as near-term pressure from subsidies is there, but the company’s long-term tech roadmap remains very compelling. 

Despite the revised target, Mizuho remained optimistic on Tesla’s long-term technology roadmap. The firm highlighted three major growth drivers into 2027: the broader adoption of Full Self-Driving V14, the expansion of Tesla’s Robotaxi service, and the commercialization of Optimus, the company’s humanoid robot. 

“We are lowering TSLA Ests/PT to $475 with Potential BEV headwinds in 2026E. We believe into 2026E, US (~37% of TSLA 3Q25 sales) EV subsidy cuts and China (34% of TSLA 3Q25 sales) potential 50% EV subsidy cuts could be a headwind to EV deliveries. 

Advertisement
-->

“We are now estimating TSLA deliveries for 2026/27E at 1.75M/2.00M (slightly below cons. 1.82M/2.15M). We see some LT drivers with FSD v14 adoption for autonomous, robotaxi launches, and humanoid robots into 2027 driving strength,” the analyst noted. 

Continue Reading

News

Tesla’s Elon Musk posts updated Robotaxi fleet ramp for Austin, TX

Musk posted his update on social media platform X.

Published

on

Credit: @AdanGuajardo/X

Elon Musk says Tesla will “roughly double” its supervised Robotaxi fleet in Austin next month as riders report long wait times and limited availability across the pilot program in the Texas city. Musk posted his update on social media platform X.

The move comes as Waymo accelerates its U.S. expansion with its fully driverless freeway service, intensifying competition in autonomous mobility.

Tesla to increase Austin Robotaxi fleet size

Tesla’s Robotaxi service in Austin continues to operate under supervised conditions, requiring a safety monitor in the front seat even as the company seeks regulatory approval to begin testing without human oversight. The current fleet is estimated at about 30 vehicles, StockTwists noted, and Musk’s commitment to doubling that figure follows widespread rider complaints about limited access and “High Service Demand” notifications.

Influencers and early users of the Robotaxi service have observed repeated failures to secure a ride during peak times, highlighting a supply bottleneck in one of Tesla’s most visible autonomy pilots. The expansion aims to provide more consistent availability as the company scales and gathers more real-world driving data, an advantage analysts often cite as a differentiator versus rivals. 

Broader rollout plans

Tesla’s Robotaxi service has so far only been rolled out to Austin and the Bay Area, though reports have indicated that the electric vehicle maker is putting in a lot of effort to expand the service to other cities across the United States. Waymo, the Robotaxi service’s biggest competitor, has ramped its service to areas like the San Francisco Bay Area, Los Angeles, and Phoenix. 

Advertisement
-->

Analysts continue to highlight Tesla’s long-term autonomy potential due to its global fleet size, vertically integrated design, and immense real-world data. ARK Invest has maintained that Tesla Robotaxis could represent up to 90% of the company’s enterprise value by 2029. BTIG analysts, on the other hand, added that upcoming Full Self-Driving upgrades will enhance reasoning, particularly parking decisions, while Tesla pushes toward expansions in Austin, the Bay Area, and potentially 8 to 10 metro regions by the end of 2025.

Continue Reading