News
SpaceX delays Starlink doubleheader
Update: To “allow additional time for pre-launch checkouts,” SpaceX has delayed Starlink 2-6 from January 30th to 8:15 am PST (16:15 UTC), January 31st and Starlink 5-3 from February 1st to February 2nd.
A pair of SpaceX Falcon 9 rockets are on track to round out the first month of 2023 and kick off the second with a Starlink double-header.
“To complete pre-launch checkouts,” SpaceX delayed its last launch of the month by 24 hours. The first Falcon 9 rocket will launch Starlink 2-6 and a D-Orbit rideshare payload no earlier than 8:29 am PST (16:29 UTC) on Monday, January 30th. The mission will lift off from SpaceX’s Vandenberg Space Force Base (VSFB) SLC-4E pad and head southeast, skirting the California and Mexico coast. In case of bad weather or a minor technical issue, a backup window is available at 12:31 pm PST.
As few as 35.5 or 39.5 hours later, a second Falcon 9 rocket will lift off from SpaceX’s Florida-based NASA Kennedy Space Center LC-39A pad around 3:02 am EST (08:02 UTC) on Tuesday, February 1st.
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
Starlink 2-6
Kicking off the pair, Starlink 2-6 will be SpaceX’s ninth Starlink rideshare mission since the company began manifesting third-party payloads on its internet satellite launches in June 2020. Falcon 9 will launch the mission’s main payload – a batch of 49 Starlink V1.5 satellites – to a semi-polar orbit that will see them cross Earth’s equator at an angle of 70 degrees. Ordinarily, the mission would carry 51 Starlinks, but SpaceX has removed a pair of satellites to make room for Italian space logistics company D-Orbit’s ION SCV009 spacecraft.
ION weighs around 160 kilograms (350 lb) on its own and is roughly the size of a large oven. D-Orbit designed the spacecraft to host fixed payloads and deploy rideshare satellites in orbit. It also has a propulsion system that allows it to provide “last-mile delivery services,” offering rideshare customers the ability to tweak the orbit their satellite ends up in. Space tugs like ION aim to give satellite owners some of the benefits of a dedicated rocket launch (custom orbit selection in particular) while retaining most of the cost savings rideshare launches enable.

After reaching orbit, Falcon 9 will deploy ION first, use thrusters to spin itself end over end, and then release all 49 Starlink satellites simultaneously. The spinning stage’s centrifugal force causes the satellite stack to naturally spread out within several hours. The satellites then use reaction wheels to stabilize their orientation, deploy solar panels to begin charging their batteries, and eventually use ion thrusters to climb to operational orbits.
ION SCV009 will attempt to test a new satellite separation system built by EBAD and demonstrate its ability to operate in very low Earth orbit (VLEO). The spacecraft will potentially lower itself to an altitude of 270 kilometers (170 mi).
Starlink 5-3
Starlink 5-3 will carry no rideshare payloads and will likely be nearly identical to Starlink 5-2, which SpaceX successfully launched on January 26th. The latest mission’s stack of 56 Starlink V1.5 satellites weighed 17.4 tons and was the heaviest payload SpaceX has ever launched. Starlink 5-3 is targeting the same orbit and will likely also carry 56 satellites.
Pad 39A last supported SpaceX’s fifth Falcon Heavy launch on January 15th and has been quickly converted back to its single-core Falcon 9 configuration for Starlink 5-3. After the Starlink mission, Pad 39A has at least two Dragon spacecraft launches scheduled before SpaceX will need to convert it back to a triple-booster configuration for Falcon Heavy’s sixth launch.
SpaceX is scheduled to launch Crew Dragon’s Crew-6 astronaut transport mission no earlier than February 26th, and Cargo Dragon’s Spx-27 cargo delivery mission on March 11th. Falcon Heavy is scheduled to launch the giant ViaSat-3 communications satellite no earlier than March 24th.
Tune in below around 8:25 am PST (16:25 UTC) to watch SpaceX Starlink 2-6 launch live.
Elon Musk
Elon Musk shares insights on SpaceX and Tesla’s potential scale
In a pair of recent posts on X, Musk argued that both companies operate in domains where growth is not linear, but exponential.
Elon Musk outlined why he believes Tesla and SpaceX ultimately dwarf their competitors, pointing to autonomy, robotics, and space-based energy as forces that fundamentally reshape economic scale.
In a pair of recent posts on X, Musk argued that both companies operate in domains where growth is not linear, but exponential.
Space-based energy
In a response to a user on X who observed that SpaceX has a larger valuation than all six US defense companies combined, Musk explained that space-based industries will eventually surpass the total economic value of Earth. He noted that space allows humanity to harness roughly 100,000 times more energy than Earth currently uses, while still consuming less than a millionth of the Sun’s total energy output.
That level of available energy should enable the emergence and development of industries that are simply not possible within Earth’s physical and environmental constraints. Continuous solar exposure in space, as per Musk’s comment, removes limitations imposed by atmosphere, weather, and land availability.
Autonomy and robots
In a follow-up post, Elon Musk explaned that “due to autonomy, Tesla is worth more than the rest of the auto industry.” Musk added that this assessment does not yet account for Optimus, Tesla’s humanoid robot. As per the CEO, once Optimus reaches scaled production, it could increase Earth’s gross domestic product by an order of magnitude, ultimately paving the way for sustainable abundance.
Even before the advent of Optimus, however, Tesla’s autonomous driving system already gives vehicles the option to become revenue-generating assets through services like the Tesla Robotaxi network. Tesla’s autonomous efforts seem to be on the verge of paying off, as services like the Robotaxi network have already been launched in its initial stages in Austin and the Bay Area.
News
Tesla Cybercab undergoes winter testing as Elon Musk reiterates production start date
CEO Elon Musk confirmed the timeline in a recent post on X, while Tesla’s official social media accounts separately revealed that Cybercab prototypes are now undergoing winter testing in Alaska.
Tesla has reiterated that production of its fully autonomous Cybercab is set to begin in April, even as the company continues expanding real-world testing of the vehicle.
CEO Elon Musk confirmed the timeline in a recent post on X, while Tesla’s official social media accounts separately revealed that Cybercab prototypes are now undergoing winter testing in Alaska.
Musk confirms April Cybercab initial production
In a post on X, Musk reiterated that Cybercab production is scheduled to begin in April, reiterating his guidance about the vehicle’s manufacturing timeline. Around the same time, Tesla shared images showing the Cybercab undergoing cold-weather testing in Alaska. Interestingly enough, the Cybercab prototypes being tested in Alaska seemed to be equipped with snow tires.
Winter testing in Alaska suggests Tesla is preparing the Cybercab for deployment across a wide range of climates in the United States. Cold temperatures, snow, ice, and reduced traction present some of the most demanding scenarios for autonomous systems, making Alaska a logical proving ground for a vehicle designed to operate without a human driver.
Taken together, Musk’s production update and Tesla’s testing post indicate that while the Cybercab is nearing the start of manufacturing, validation efforts are still actively ramping to ensure reliability in real-world environments.
What early Cybercab production might look like
Musk has previously cautioned that the start of Cybercab manufacturing will be slow, reflecting the challenges of launching an all-new vehicle platform. In a recent comment, Musk said initial production typically follows an S-curve, with early output constrained by how many new parts and processes are involved.
According to Musk, both Cybercab and Optimus fall into this category, as “almost everything is new.” As a result, early production rates are expected to be very deliberate before eventually accelerating rapidly as manufacturing processes mature.
“Initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast,” Musk wrote in a post on X.
Elon Musk
Tesla to increase Full Self-Driving subscription price: here’s when
Tesla will increase its Full Self-Driving subscription price, meaning it will eventually be more than the current $99 per month price tag it has right now.
Already stating that the ability to purchase the suite outright will be removed, Tesla CEO Elon Musk said earlier this week that the Full Self-Driving subscription price would increase when its capabilities improve:
“I should also mention that the $99/month for supervised FSD will rise as FSD’s capabilities improve. The massive value jump is when you can be on your phone or sleeping for the entire ride (unsupervised FSD).”
This was an expected change, especially as Tesla has been hinting for some time that it is approaching a feature-complete version of Full Self-Driving that will no longer require driver supervision. However, with the increase, some are concerned that they may be priced out.
$99 per month is already a tough ask for some. While Full Self-Driving is definitely worth it just due to the capabilities, not every driver is ready to add potentially 50 percent to their car payment each month to have it.
While Tesla has not revealed any target price for FSD, it does seem that it will go up to at least $150.
I should also mention that the $99/month for supervised FSD will rise as FSD’s capabilities improve.
The massive value jump is when you can be on your phone or sleeping for the entire ride (unsupervised FSD). https://t.co/YDKhXN3aaG
— Elon Musk (@elonmusk) January 23, 2026
Additionally, the ability to purchase the suite outright is also being eliminated on February 14, which gives owners another reason to be slightly concerned about whether they will be able to afford to continue paying for Full Self-Driving in any capacity.
Some owners have requested a tiered program, which would allow people to pay for the capabilities they want at a discounted price.
Unsupervised FSD would be the most expensive, and although the company started removing Autopilot from some vehicles, it seems a Supervised FSD suite would still attract people to pay between $49 and $99 per month, as it is very useful.
Tesla will likely release pricing for the Unsupervised suite when it is available, but price increases could still come to the Supervised version as things improve.
This is not the first time Musk has hinted that the price would change with capability improvements, either. He’s been saying it for some time. In 2020, he even said the value of FSD would “probably be somewhere in excess of $100,000.”
The FSD price will continue to rise as the software gets closer to full self-driving capability with regulatory approval. It that point, the value of FSD is probably somewhere in excess of $100,000.
— Elon Musk (@elonmusk) May 18, 2020
