Connect with us
Merlin 1D's kerolox exhaust is a blindingly bright, opaque yellow-orange. (Tom Cross) Merlin 1D's kerolox exhaust is a blindingly bright, opaque yellow-orange. (Tom Cross)

News

SpaceX static fires Falcon 9 with satellites on board for the first time in years

Falcon 9 B1049 lifts off for the first time in September 2018. The same booster has been assigned to Starlink v0.9. (Tom Cross)

Published

on

SpaceX has successfully completed a Falcon 9 static fire ahead of Starlink’s first dedicated launch, breaking a practice that dates back to Falcon 9’s last catastrophic failure to date.

That failure occurred in September 2016 around nine minutes before a planned Falcon 9 static fire test, completely destroying the rocket and the Amos-6 communications satellite payload and severely damaging Launch Complex 40 (LC-40). Since that fateful failure, all 42 subsequent Falcon 9 and Falcon Heavy satellite launches have been preceded by static fire tests without a payload fairing attached. This process typically adds 24-48 hours of work to launch operations, an admittedly tiny price to pay to reduce the chances of a rocket failure completely destroying valuable payloads. With Starlink v0.9, SpaceX is making different choices.

When supercool liquid oxygen ruptured a composite overwrapped pressure vessel (COPV) in Falcon 9’s upper stage, the resultant explosion and fire destroyed Falcon 9. Perhaps more importantly, the ~$200M Amos-6 satellite installed atop the rocket effectively ceased to exist, a loss that posed a serious threat to the livelihood of its owner, Spacecom. Posed with a question of whether saving a day or two of schedule was worth the potential destruction of customer payloads, both customers, SpaceX, and their insurers obviously concluded that static fires should be done without payloads aboard the rocket.

The only exceptions since Amos-6 are the launch debuts of Falcon Heavy – with a payload that was effectively disposable and SpaceX-built – and Crew Dragon DM-1, in which Falcon 9’s integration with Dragon’s launch abort system had to be tested as part of the static fire. Every other SpaceX rocket launch since September 2016 has excluded payloads during each routine pre-flight static fire.

Falcon Heavy ignites all 27 Merlin 1D engines for the first time ahead of its inaugural launch, January 2018. (SpaceX)
SpaceX completed a successful static fire of the first Falcon 9 rated for human flight on January 24th, 2019. (SpaceX)

SpaceX’s Spacecraft Emporium

Why the change of pace on this launch, then? The answer is simple: for the first time ever, SpaceX is both the sole payload/satellite stakeholder and launch provider, meaning that nearly all of the mission’s risk – and the consequences of failure – rest solely on SpaceX’s shoulders. In other words, SpaceX built and owns the Falcon 9 assigned to the mission, the 60 Starlink test satellites that make up its payload, and the launch complex supporting the mission.

Even then, if Falcon 9 were to fail during an internal SpaceX mission, customer launches could be seriously delayed by both the subsequent failure investigation failure and any potential damage to the launch complex. In short, although an internal mission does offer SpaceX some unique freedoms, it is still in the company’s best interest to treat the launch like any other, even if some customer-oriented corners are likely begging to be cut. Additionally, the loss of SpaceX’s first dedicated payload of 60 Starlink satellites could be a significant setback for the constellation, although it may be less significant than most would assume.

The same pad will host GovSat-1 in just over 24 hours.
A December 2017 panorama of SpaceX’s LC-40 facilities, CRS-13’s Cargo Dragon and Falcon 9. (Tom Cross/Teslarati)

This is not to say that SpaceX won’t take advantage of some of the newfound freedom permitted by Starlink launches. In fact, CEO Elon Musk has stated that one of SpaceX’s 2019 Starlink missions will become the first to reuse a Falcon fairing. Additionally, SpaceX is free to do things that customers might be opposed to but that the company’s own engineers believe to be low-risk. Notably, Starlink missions will be an almost perfect opportunity for SpaceX to flight-prove reusability milestones without having to ask customers to tread outside of their comfort zones.

The sheer scale of SpaceX proposed Starlink constellation – two phases of ~4400 and ~12,000 satellites – means that the company will need all the latent launch capacity it can get over the next 5-10 years, at least until Starship/Super Heavy is able to support internal missions. Extraordinary packing density will help to minimize the number of launches needed, but the fact remains that even an absurd 120 satellites per launch (double Starlink v0.9’s 60) would still require an average of 12 launches per year to finish Starlink before 2030.

One of the first two prototype Starlink satellites separates from Falcon 9’s upper stage in February 2018. (SpaceX)
OneWeb deployed six development satellites in February 2019, the company’s first hardware to reach orbit. (Arianespace)

In the meantime, thoughts of a dozen or more annual Starlink launches are somewhat premature. SpaceX’s first dedicated Starlink launch (deemed Starlink v0.9) is scheduled to lift off no earlier than 10:30 pm EDT (02:30 UTC), May 15th, and is being treated as an advanced but still intermediary step between the Tintin prototypes and a finalized spacecraft design. Still, in an unprecedented step, SpaceX has built sixty Starlink satellites for the development-focused mission, in stark contrast to the six satellites (still a respectable achievement) competitor OneWeb launched in February 2019 as part of its own flight-test program.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Published

on

General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.

She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.

During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:

“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”

People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.

Elon Musk and Tesla try to save legacy automakers from Déjà vu

Musk would eventually go on to talk about Biden’s words later on:

They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”

In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.

Continue Reading

News

Tesla Full Self-Driving shows confident navigation in heavy snow

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.

Published

on

Credit: Grok

Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.

The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.

Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when

However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.

One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:

Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.

We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.

Continue Reading

News

Tesla hosts Rome Mayor for first Italian FSD Supervised road demo

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.

Published

on

Credit: @andst7/X

Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration. 

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.

Rome officials experience FSD Supervised

Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.

The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.

Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.

Advertisement
-->

Path to European rollout

Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.

Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.

Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”

Continue Reading