News
SpaceX static fires Falcon 9 with satellites on board for the first time in years
SpaceX has successfully completed a Falcon 9 static fire ahead of Starlink’s first dedicated launch, breaking a practice that dates back to Falcon 9’s last catastrophic failure to date.
That failure occurred in September 2016 around nine minutes before a planned Falcon 9 static fire test, completely destroying the rocket and the Amos-6 communications satellite payload and severely damaging Launch Complex 40 (LC-40). Since that fateful failure, all 42 subsequent Falcon 9 and Falcon Heavy satellite launches have been preceded by static fire tests without a payload fairing attached. This process typically adds 24-48 hours of work to launch operations, an admittedly tiny price to pay to reduce the chances of a rocket failure completely destroying valuable payloads. With Starlink v0.9, SpaceX is making different choices.
When supercool liquid oxygen ruptured a composite overwrapped pressure vessel (COPV) in Falcon 9’s upper stage, the resultant explosion and fire destroyed Falcon 9. Perhaps more importantly, the ~$200M Amos-6 satellite installed atop the rocket effectively ceased to exist, a loss that posed a serious threat to the livelihood of its owner, Spacecom. Posed with a question of whether saving a day or two of schedule was worth the potential destruction of customer payloads, both customers, SpaceX, and their insurers obviously concluded that static fires should be done without payloads aboard the rocket.
The only exceptions since Amos-6 are the launch debuts of Falcon Heavy – with a payload that was effectively disposable and SpaceX-built – and Crew Dragon DM-1, in which Falcon 9’s integration with Dragon’s launch abort system had to be tested as part of the static fire. Every other SpaceX rocket launch since September 2016 has excluded payloads during each routine pre-flight static fire.


SpaceX’s Spacecraft Emporium
Why the change of pace on this launch, then? The answer is simple: for the first time ever, SpaceX is both the sole payload/satellite stakeholder and launch provider, meaning that nearly all of the mission’s risk – and the consequences of failure – rest solely on SpaceX’s shoulders. In other words, SpaceX built and owns the Falcon 9 assigned to the mission, the 60 Starlink test satellites that make up its payload, and the launch complex supporting the mission.
Even then, if Falcon 9 were to fail during an internal SpaceX mission, customer launches could be seriously delayed by both the subsequent failure investigation failure and any potential damage to the launch complex. In short, although an internal mission does offer SpaceX some unique freedoms, it is still in the company’s best interest to treat the launch like any other, even if some customer-oriented corners are likely begging to be cut. Additionally, the loss of SpaceX’s first dedicated payload of 60 Starlink satellites could be a significant setback for the constellation, although it may be less significant than most would assume.

This is not to say that SpaceX won’t take advantage of some of the newfound freedom permitted by Starlink launches. In fact, CEO Elon Musk has stated that one of SpaceX’s 2019 Starlink missions will become the first to reuse a Falcon fairing. Additionally, SpaceX is free to do things that customers might be opposed to but that the company’s own engineers believe to be low-risk. Notably, Starlink missions will be an almost perfect opportunity for SpaceX to flight-prove reusability milestones without having to ask customers to tread outside of their comfort zones.
The sheer scale of SpaceX proposed Starlink constellation – two phases of ~4400 and ~12,000 satellites – means that the company will need all the latent launch capacity it can get over the next 5-10 years, at least until Starship/Super Heavy is able to support internal missions. Extraordinary packing density will help to minimize the number of launches needed, but the fact remains that even an absurd 120 satellites per launch (double Starlink v0.9’s 60) would still require an average of 12 launches per year to finish Starlink before 2030.


In the meantime, thoughts of a dozen or more annual Starlink launches are somewhat premature. SpaceX’s first dedicated Starlink launch (deemed Starlink v0.9) is scheduled to lift off no earlier than 10:30 pm EDT (02:30 UTC), May 15th, and is being treated as an advanced but still intermediary step between the Tintin prototypes and a finalized spacecraft design. Still, in an unprecedented step, SpaceX has built sixty Starlink satellites for the development-focused mission, in stark contrast to the six satellites (still a respectable achievement) competitor OneWeb launched in February 2019 as part of its own flight-test program.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
SpaceX reaches incredible milestone with Starlink program
SpaceX reached an incredible milestone with its Starlink program with a launch last night, as the 3,000th satellite of the year was launched into low Earth orbit.
On Monday, SpaceX also achieved its 32nd flight with a single Falcon 9 rocket from NASA’s Kennedy Space Center.
The mission was Starlink 6-92, and it utilized the Falcon 9 B1067 for the 32nd time this year, the most-used Falcon booster. The flight delivered SpaceX’s 3000th Starlink satellite of the year, a massive achievement.
There were 29 Starlink satellites launched and deployed into LEO during this particular mission:
Falcon 9 launches 29 @Starlink satellites from Florida pic.twitter.com/utKrXjHzPN
— SpaceX (@SpaceX) December 9, 2025
SpaceX has a current goal of certifying its Falcon boosters for 40 missions apiece, according to Spaceflight Now.
The flight was the 350th orbital launch from the nearby SLC-40, and the 3,000 satellites that have been successfully launched this year continue to contribute to the company’s goal of having 12,000 satellites contributing to global internet coverage.
There are over five million users of Starlink, the latest data shows.
Following the launch and stage separation, the Falcon 9 booster completed its mission with a perfect landing on the ‘Just Read the Instructions’ droneship.
The mission was the 575th overall Falcon 9 launch, highlighting SpaceX’s operational tempo, which continues to be accelerated. The company averages two missions per week, and underscores CEO Elon Musk’s vision of a multi-planetary future, where reliable connectivity is crucial for remote work, education, and emergency response.
As Starlink expands and works toward that elusive and crucial 12,000 satellite goal, missions like 6-92 pave the way for innovations in telecommunications and enable more internet access to people across the globe.
With regulatory approvals in over 100 countries and millions of current subscribers, SpaceX continues to democratize space, proving that reusability is not just feasible, but it’s also revolutionary.
News
Tesla expands new Full Self-Driving program in Europe
Tesla expanded its new Full Self-Driving program, which gives people the opportunity to experience the company’s suite, in Europe.
Tesla recently launched an opportunity for Europeans to experience Full Self-Driving, not in their personal vehicles, but through a new ride-along program that initially launched in Italy, France, and Germany back in late November.
People could experience it by booking a reservation with a local Tesla showroom, but timeslots quickly filled up, making it difficult to keep up with demand. Tesla expanded the program and offered some additional times, but it also had its sights set on getting the program out to new markets.
It finally achieved that on December 9, as it launched rides in Denmark and Switzerland, adding the fourth and fifth countries to the program.
Tesla confirmed the arrival of the program to Denmark and Switzerland on X:
Now available in Denmark & Switzerland
🇩🇰 https://t.co/IpCSwHO566 https://t.co/V2N5EarLNX
— Tesla Europe & Middle East (@teslaeurope) December 9, 2025
The program, while a major contributor to Tesla’s butts in seats strategy, is truly another way for the company to leverage its fans in an effort to work through the regulatory hurdles it is facing in Europe.
Tesla has faced significant red tape in the region, and although it has tested the FSD suite and been able to launch this ride-along program, it is still having some tremendous issues convincing regulatory agencies to allow it to give it to customers.
CEO Elon Musk has worked with regulators, but admitted the process has been “insanely painful.”
The most recent development with FSD and its potential use in Europe dealt with the Dutch approval authority, known as the RDW.
Tesla says Europe could finally get FSD in 2026, and Dutch regulator RDW is key
Tesla said it believes some regulations are “outdated and rules-based,” which makes the suite ineligible for use in the European jurisdiction.
The RDW is working with Tesla to gain approval sometime early next year, but there are no guarantees. However, Tesla’s angle with the ride-along program seems to be that if it can push consumers to experience it and have a positive time, it should be easier for it to gain its footing across Europe with regulatory agencies.
News
Tesla ramps hiring for Roadster as latest unveiling approaches
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering.
Tesla is ramping up hiring for positions related to the Roadster program, the company’s ultra-fast supercar that has been teased to potentially hover by CEO Elon Musk.
The company seems to be crossing off its last handful of things before it plans to unveil the vehicle on April Fool’s Day, just about four months away.
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering. All three are located in Northern California, with two being at the Fremont Factory and the other at the company’s Engineering HQ in Palo Alto.
Technical Program Manager, Battery Manufacturing
Located in Fremont, this role specifically caters to the design of the Roadster to factory operations. It appears this role will mostly have to do with developing and engineering the Roadster’s battery pack and establishing the production processes for it:
“You will foster collaboration across design engineering, manufacturing, quality, facilities, and production to align with company priorities. Additionally, you will understand project opportunities, challenges, and dependencies; translate scattered information into concise, complete messages; and communicate them to every team member. As the business process development lead, you will develop, maintain, and implement tools and processes to accelerate battery manufacturing execution, achieve cross-functional alignment, and deliver highly efficient systems.”
Manufacturing Engineer, Roadster
Also located in Fremont, this role also has to deal with the concept development and launch of battery manufacturing equipment. Tesla says:
“In this role, you will take large-scale manufacturing systems for new battery products and architectures from the early concept development stage through equipment launch, optimization, and handover to local operations teams.”
Manufacturing Vision Engineer, Battery Vision
This position is in Palo Alto at Tesla’s Engineering Headquarters, and requires the design and scale of advanced inspection and control systems to next-generation battery products:
“You’ll work on automation processes that directly improve battery performance, quality, and cost, collaborating with world-class engineers in a fast-paced, hands-on environment.”
Developing and deploying 2D and 3D vision and measurement systems from proof-of-concept to deployment on high-volume battery manufacturing lines is part of the job description.
Roadster Unveiling
Tesla plans to unveil the Roadster on April 1, and although it was planned for late this year, it is nice to see the company put out a definitive date.
Musk said on the Joe Rogan Experience Podcast in late October:
“Whether it’s good or bad, it will be unforgettable. My friend Peter Thiel once reflected that the future was supposed to have flying cars, but we don’t have flying cars. I think if Peter wants a flying car, he should be able to buy one…I think it has a shot at being the most memorable product unveil ever.”
Production should begin between 12 to 18 months after unveiling, so we could see it sometime in 2027.