Connect with us

News

SpaceX’s fourth Falcon booster delivery this year hints at rare production uptick

A mystery Falcon 9 booster was spotted at SpaceX's HQ on July 18th and again on its way to McGregor, Texas on the 21st. (Kolby Ratigan)

Published

on

For at least the fourth time in 2021, SpaceX has shipped a new Falcon booster from its Hawthorne, California headquarters and factory to an expansive test and development campus in Central Texas.

By all appearances, SpaceX’s latest delivery could imply that the company is on track to experience its first Falcon booster production uptick in four years. Thanks almost exclusively to the overwhelming success of Falcon reusability, SpaceX has been decreasing booster production year over year since 2017 while (on the whole) still significantly increasing its annual launch cadence. However, that downward booster production trend may have finally come to an end in 2021.

On July 21st, spaceflight journalist Eric Berger spotted a SpaceX Falcon booster – almost impossible to miss on the road – traveling eastbound towards El Paso on a Texas highway. Designed from the start with a maximum diameter (3.6m/12′) explicitly limited to allow Falcon 9 and Falcon Heavy stages to be easily and cheaply transported by road, SpaceX has taken advantage of that capability by making Falcon rockets some of the most extensively tested launch vehicles on Earth.

Most notably, every single Falcon 9 and Falcon Heavy booster and upper stage SpaceX has ever built at its Hawthorne HQ has shipped to McGregor, Texas for qualification testing before being cleared to launch. The exact nature of that qualification testing is unknown but, at minimum, every SpaceX-built stage must eventually complete a clean static fire test before the company deems it qualified for flight and ships it to one of three launch pads.

Before integrated static fire testing, SpaceX also separately tests every single Merlin 1D, Merlin Vacuum, Draco engine, and cold gas thruster before they’re installed on their respective Falcon first stage, second stage, fairing, or Dragon spacecraft back in California. However, Falcon engines, fairings, second stages, and Dragon spacecraft are all small or well-packaged enough to be unassuming on the road. Only Falcon boosters – measuring some 4m (~13 ft) wide and 56m (~190 ft) long and usually wrapped in solid white or black plastic – are routinely spotted in the wild by members of the public.

Advertisement
-->

Those regular public spottings provide the only real glimpse available behind the curtain of SpaceX’s prolific rocket production. Beyond a mishmash of observations from members of the public and the occasional tidbit from CEO Elon Musk, SpaceX – a private company in a very competitive industry – provides no official information about how many Falcon stages it produces each year. That leaves it up to unaffiliated fans to collate and track that activity.

In particular, one Reddit user went to the effort of combing through a decade of those observations to tabulate SpaceX’s annual Falcon first stage production – including Falcon 9 and Falcon Heavy boosters – since 2010. From 2010 to 2017, booster production consistently grew year over year, ultimately peaking at 13 – more than one booster per month – in 2017. Since 2017, booster production has consistently declined, dropping to just five boosters completed in 2020 – the lowest figure since 2013.

Of course, despite building just five new boosters in 2020, SpaceX completed a record 26 Falcon 9 launches, demonstrating just how much of a paradigm shift booster reusability has been for the company. Notably, while booster production has drastically decreased, SpaceX still has to manufacture a new expendable upper stage for every Falcon launch, meaning that – for the most part – Hawthorne is likely as busy as – and soon to be busier than – it was around the 2016-2018 peak.

In a bit of twist, though, that booster production downtick may have bottomed out in 2020. Since May 2020, SpaceX appears to have shipped at least 8 or 9 boosters* from Hawthorne to McGregor. Less than a month ago, a new booster – believed to be Falcon 9 B1069 – went vertical in McGregor ahead of its first wet dress rehearsal and static fire. Less than three weeks later, another new Falcon booster was spotted ready for transport outside of Hawthorne – likely the same booster spotted on its way to McGregor on July 21st.

*Including F9/FH boosters B1061, B1062, B1063, B1064, B1065, B1066, B1067, and B1069

In 2021, SpaceX has delivered one Falcon Heavy (likely B1066) and two Falcon 9 boosters (B1067 and B1069) to McGregor. The mystery booster seen in Hawthorne on July 18th – now likely inside a McGregor hangar as of publishing – is the fourth Falcon first stage to roll out of Hawthorne this year. If SpaceX maintains that average over the next five months, it could ship 6 or even 7 Falcon boosters in 2021 – marking the first apparent production uptick since 2017.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla reliability rankings skyrocket significantly in latest assessment

“They definitely have their struggles, but by continuing to refine and not make huge changes in their models, they’re able to make more reliable vehicles, and they’ve moved up our rankings.”

Published

on

Credit: Tesla

Tesla ranked in the Top 10 of the most reliable car companies for 2026, as Consumer Reports’ latest index showed significant jumps from the past two years.

In 2022, Tesla ranked 27th out of 28 brands. Last year, it came in 17th.

However, 2026’s rankings were differentCR‘s rankings officially included Tesla in the Top 10, its best performance to date.

Finishing tenth, the full Top 10 is:

  1. Subaru
  2. BMW
  3. Porsche
  4. Honda
  5. Toyota
  6. Lexus
  7. Lincoln
  8. Hyundai
  9. Acura
  10. Tesla

Tesla has had steady improvements in its build quality, and its recent refinements of the Model 3 and Model Y have not gone unnoticed.

The publication’s Senior Director of Auto Testing, Jake Fisher, said about Tesla that the company’s ability to work through the rough patches has resulted in better performance (via CNBC):

“They definitely have their struggles, but by continuing to refine and not make huge changes in their models, they’re able to make more reliable vehicles, and they’ve moved up our rankings.”

He continued to say that Tesla’s vehicles have become more reliable over time, and its decision to avoid making any significant changes to its bread-and-butter vehicles has benefited its performance in these rankings.

Legacy automakers tend to go overboard with changes, sometimes keeping a model name but recognizing a change in its “generation.” This leads to constant growing pains, as the changes in design require intense adjustments on the production side of things.

Instead, Tesla’s changes mostly come from a software standpoint, which are delivered through Over-the-Air updates, which improve the vehicle’s functionality or add new features.

Only one Tesla vehicle scored below average in Consumer Reports’ rankings for 2026 was the Cybertruck. Fisher’s belief that Tesla improves its other models over time might prove to be true with Cybertruck in a few years.

Tesla Cybertruck gets reviewed by Consumer Reports

He continued:

“They’re definitely improving by keeping with things and refining, but if you look at their 5- to 10-year-old models that are out there, when it comes to reliability, they’re dead last of all the brands. They’re able to improve the reliability if they don’t make major changes.”

Regarding Subaru’s gold medal placing on the podium, Fisher said:

“While Subaru models provide good performance and comfort, they also excel in areas that may not be immediately apparent during a test drive.”

Other notable brands to improve are Rivian, which bumped itself slightly from 31 to 26. Chevrolet finished 24th, GMC ended up 29th, and Ford saw itself in 18th.

Continue Reading

Elon Musk

Tesla Full Self-Driving v14.2.1 texting and driving: we tested it

We decided to test it, and our main objective was to try to determine a more definitive label for when it would allow you to grab your phone and look at it without any nudge from the in-car driver monitoring system.

Published

on

Credit: Grok

On Thursday, Tesla CEO Elon Musk said that Full Self-Driving v14.2.1 would enable texting and driving “depending on [the] context of surrounding traffic.”

Tesla CEO Elon Musk announces major update with texting and driving on FSD

We decided to test it, and our main objective was to try to determine a more definitive label for when it would allow you to grab your phone and look at it without any nudge from the in-car driver monitoring system.

I’d also like to add that, while Tesla had said back in early November that it hoped to allow this capability within one to two months, I still would not recommend you do it. Even if Tesla or Musk says it will allow you to do so, you should take into account the fact that many laws do not allow you to look at your phone. Be sure to refer to your local regulations surrounding texting and driving, and stay attentive to the road and its surroundings.

The Process

Based on Musk’s post on X, which said the ability to text and drive would be totally dependent on the “context of surrounding traffic,” I decided to try and find three levels of congestion: low, medium, and high.

I also tried as best as I could to always glance up at the road, a natural reaction, but I spent most of my time, during the spans of when it was in my hand, looking at my phone screen. I limited my time looking at the phone screen to a few seconds, five to seven at most. On local roads, I didn’t go over five seconds; once I got to the highway, I ensured the vehicle had no other cars directly in front of me.

Also, at any time I saw a pedestrian, I put my phone down and was fully attentive to the road. I also made sure there were no law enforcement officers around; I am still very aware of the law, which is why I would never do this myself if I were not testing it.

I also limited the testing to no more than one minute per attempt.

I am fully aware that this test might ruffle some feathers. I’m not one to text and drive, and I tried to keep this test as abbreviated as possible while still getting some insight on how often it would require me to look at the road once again.

The Results

Low Congestion Area

I picked a local road close to where I live at a time when I knew there would be very little traffic. I grabbed my phone and looked at it for no more than five seconds before I would glance up at the road to ensure everything was okay:

Looking up at the road was still regular in frequency; I would glance up at the road after hitting that five-second threshold. Then I would look back down.

I had no nudges during this portion of the test. Traffic was far from even a light volume, and other vehicles around were very infrequently seen.

Medium Congestion Area

This area had significantly more traffic and included a stop at a traffic light. I still kept the consecutive time of looking at my phone to about five seconds.

I would quickly glance at the road to ensure everything was okay, then look back down at my phone, spending enough time looking at a post on Instagram, X, or Facebook to determine what it was about, before then peeking at the road again.

There was once again no alert to look at the road, and I started to question whether I was even looking at my phone long enough to get an alert:

Based on past versions of Full Self-Driving, especially dating back to v13, even looking out the window for too long would get me a nudge, and it was about the same amount of time, sometimes more, sometimes less, I would look out of a window to look at a house or a view.

High Congestion Area

I decided to use the highway as a High Congestion Area, and it finally gave me an alert to look at the road.

As strange as it is, I felt more comfortable looking down at my phone for a longer amount of time on the highway, especially considering there is a lower chance of a sudden stop or a dangerous maneuver by another car, especially as I was traveling just 5 MPH over in the left lane.

This is where I finally got an alert from the driver monitoring system, and I immediately put my phone down and returned to looking at the road:

Once I was able to trigger an alert, I considered the testing over with. I think in the future I’d like to try this again with someone else in the car to keep their eyes on the road, but I’m more than aware that we can’t always have company while driving.

My True Thoughts

Although this is apparently enabled based on what was said, I still do not feel totally comfortable with it. I would not ever consider shooting a text or responding to messages because Full Self-Driving is enabled, and there are two reasons for that.

The first is the fact that if an accident were to happen, it would be my fault. Although it would be my fault, people would take it as Tesla’s fault, just based on what media headlines usually are with accidents involving these cars.

Secondly, I am still well aware that it’s against the law to use your phone while driving. In Pennsylvania, we have the Paul Miller Law, which prohibits people from even holding their phones, even at stop lights.

I’d feel much more comfortable using my phone if liability were taken off of me in case of an accident. I trust FSD, but I am still erring on the side of caution, especially considering Tesla’s website still indicates vehicle operators have to remain attentive while using either FSD or Autopilot.

Check out our full test below:

Continue Reading

Elon Musk

Tesla CEO Elon Musk announces major update with texting and driving on FSD

“Depending on context of surrounding traffic, yes,” Musk said in regards to FSD v14.2.1 allowing texting and driving.

Published

on

Credit: carwow/YouTube

Tesla CEO Elon Musk has announced a major update with texting and driving capabilities on Full Self-Driving v14.2.1, the company’s latest version of the FSD suite.

Tesla Full Self-Driving, even in its most mature and capable versions, is still a Level 2 autonomous driving suite, meaning it requires attention from the vehicle operator.

You cannot sleep, and you should not take attention away from driving; ultimately, you are still solely responsible for what happens with the car.

The vehicles utilize a cabin-facing camera to enable attention monitoring, and if you take your eyes off the road for too long, you will be admonished and advised to pay attention. After five strikes, FSD and Autopilot will be disabled.

However, Musk announced at the Annual Shareholder Meeting in early November that the company would look at the statistics, but it aimed to allow people to text and drive “within the next month or two.”

He said:

“I am confident that, within the next month or two, we’re gonna look at the safety statistics, but we will allow you to text and drive.”

Today, Musk confirmed that the current version of Full Self-Driving, which is FSD v14.2.1, does allow for texting and driving “depending on context of surrounding traffic.”

There are some legitimate questions with this capability, especially as laws in all 50 U.S. states specifically prohibit texting and driving. It will be interesting to see the legality of it, because if a police officer sees you texting, they won’t know that you’re on Full Self-Driving, and you’ll likely be pulled over.

Some states prohibit drivers from even holding a phone when the car is in motion.

It is certainly a move toward unsupervised Full Self-Driving operation, but it is worth noting that Musk’s words state it will only allow the vehicle operator to do it depending on the context of surrounding traffic.

He did not outline any specific conditions that FSD would allow a driver to text and drive.

Continue Reading