News
SpaceX’s next Falcon Heavy begins to arrive at 39A as center core heads to TX
Approximately a week after a Falcon Heavy side booster – the first of two – arrived at SpaceX’s LC-39A launch complex, a sign of late-stage preparation for the massive rocket’s second and third launches, a Falcon Heavy center stage was spotted rolling through the Waco, Texas locale on its way to SpaceX’s McGregor testing facilities.
Signified by the outlines of unusual bumps under the Falcon booster’s protective shrink wrap, this probable Falcon Heavy center core’s Texas arrival indicates that SpaceX has most likely completed static fire testing of both side boosters, with the second booster now likely to depart McGregor and/or arrive at SpaceX’s Florida facilities in the coming weeks.
The first component of Falcon Heavy Block 5 has arrived at HLC-39A! https://t.co/38spGaCps9
— Thomas Burghardt (@TGMetsFan98) December 22, 2018
In February 2018, Falcon Heavy took flight for the first time ever, bringing to an end an almost mythical series of delays that pushed the rocket’s debut back more than five years. Aside from the unintentional demise of Falcon Heavy Flight 1’s center core, the inaugural launch was a spectacular and technologically valuable success, perfectly verifying the rocket’s ability to safely ignite, launch, separate, and recover two Falcon 9-class boosters simultaneously. SpaceX also took the opportunity – a payload with no practical value aside from inspiration – to perform a successful six-hour coast of the Falcon upper stage, demonstrating a capability critical for many potentially valuable launch contracts.

Now verified by planning schedules, SpaceX plans to attempt a truly impressive feat in the first half of 2019. Assuming all goes well during the center booster’s static fire and the subsequent integration and static fire of all three first stages, the company intends to launch the same Falcon Heavy hardware (all three boosters) twice in as little as two months, currently tentatively penciled in for February/March and April 2019.
Surprise sighting of a #SpaceX Falcon 9 rocket booster in my hometown headed a few minutes down the road to the McGregor, TX test site. First time in years seeing a booster in transit “in the wild” like this. 🚀 @elonmusk #falcon9 #falconheavy #STEM #bfr #space pic.twitter.com/daEz4NZPi5
— Abby Garrett (@abbygarrettart) January 1, 2019
Corroborated a few weeks ago by a NASA official involved in one of the payloads that will be present on that planned April launch, SpaceX plans to attempt recovery of both the side boosters and center core and rapidly refurbish them after their first launch in February or March, nominally placing the 6000 kg (~13,200 lb) Arabsat 6A satellite into a high-energy orbit. Perhaps as few as 4-8 weeks later, the rocket will be reintegrated, perform a second static fire at Pad 39A, and launch once again with a USAF rideshare known as Space Test Program (STP) 2, a program specifically designed to allow the Air Force to support low-risk test launches of unproven rockets.
Even more so than the fact that an ~8-week Falcon Heavy turnaround would simultaneously break SpaceX’s previous booster turnaround record in triplicate, the biggest reason to be skeptical of these plans is the fact that this schedule appears to require that the USAF fly a mission on not one but three flight-proven Falcon boosters. This stands at odds with the military branch’s unwillingness (by all appearances) to so much as allow a brand new Falcon 9 enough propellant margin (typically just a few percent) to land itself after the December 23rd launch of GPS III SV01, let alone allow their satellites to ride on a previously-flown rocket.
- Falcon Heavy is composed of a Falcon 9 upper stage and three Falcon 9-class boosters. (SpaceX)
- Falcon Heavy’s simultaneous side booster recovery. This will likely be repeated for both Arabsat 6A and STP-2. (SpaceX)
- The communications satellite Arabsat-6A. (Lockheed Martin)
- The USAF’s STP-2, a combination of a few dozen different satellites. (USAF)
The major wrench in the machine here is the fact that GPS III SV01 most likely cost the USAF upwards of $700M to procure and will ultimately become a critical part of a widespread infrastructural upgrade, whereas STP-2 features two dozen or so small satellites worth dramatically less than the single GPS satellite SpaceX launched last month. STP-2 also operates under a program that is in large part meant to offer opportunities for new or wholly unproven launch vehicles (like Falcon Heavy) to conduct experimental launches, carrying the assumption that certifying those rockets for national security space (NSS) missions would be in the best interests of the Air Force and DoD.
As such, the back-to-back Falcon Heavy launch schedule is by no means impossible despite the fact that it offers up many reasons to doubt its plausibility. Either way, the fact that the next Falcon Heavy’s center core has already left SpaceX’s Hawthorne factory – following in the footsteps of two new side boosters – is a nearly unequivocal sign that the rocket’s second launch rapidly approaching.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
Tesla exec pleads for federal framework of autonomy to U.S. Senate Committee
Tesla executive Lars Moravy appeared today in front of the U.S. Senate Commerce Committee to highlight the importance of modernizing autonomy standards by establishing a federal framework that would reward innovation and keep the country on pace with foreign rivals.
Moravy, who is Tesla’s Vice President of Vehicle Engineering, strongly advocated for Congress to enact a national framework for autonomous vehicle development and deployment, replacing the current patchwork of state-by-state rules.
These rules have slowed progress and kept companies fighting tooth-and-nail with local legislators to operate self-driving projects in controlled areas.
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
Moravy said the new federal framework was essential for the U.S. to “maintain its position in global technological development and grow its advanced manufacturing capabilities.
He also said in a warning to the committee that outdated regulations and approval processes would “inhibit the industry’s ability to innovate,” which could potentially lead to falling behind China.
Being part of the company leading the charge in terms of autonomous vehicle development in the U.S., Moravy highlighted Tesla’s prowess through the development of the Full Self-Driving platform. Tesla vehicles with FSD engaged average 5.1 million miles before a major collision, which outpaces that of the human driver average of roughly 699,000 miles.
Moravy also highlighted the widely cited NHTSA statistic that states that roughly 94 percent of crashes stem from human error, positioning autonomous vehicles as a path to dramatically reduce fatalities and injuries.
🚨 Tesla VP of Vehicle Engineering, Lars Moravy, appeared today before the U.S. Senate Commerce Committee to discuss the importance of outlining an efficient framework for autonomous vehicles:
— TESLARATI (@Teslarati) February 4, 2026
Skeptics sometimes point to cybersecurity concerns within self-driving vehicles, which was something that was highlighted during the Senate Commerce Committee hearing, but Moravy said, “No one has ever been able to take over control of our vehicles.”
This level of security is thanks to a core-embedded central layer, which is inaccessible from external connections. Additionally, Tesla utilizes a dual cryptographic signature from two separate individuals, keeping security high.
Moravy also dove into Tesla’s commitment to inclusive mobility by stating, “We are committed with our future products and Robotaxis to provide accessible transportation to everyone.” This has been a major point of optimism for AVs because it could help the disabled, physically incapable, the elderly, and the blind have consistent transportation.
Overall, Moravy’s testimony blended urgency about geopolitical competition, especially China, with concrete safety statistics and a vision of the advantages autonomy could bring for everyone, not only in the U.S., but around the world, as well.
News
Tesla Model Y lineup expansion signals an uncomfortable reality for consumers
Tesla launched a new configuration of the Model Y this week, bringing more complexity to its lineup of the vehicle and adding a new, lower entry point for those who require an All-Wheel-Drive car.
However, the broadening of the Model Y lineup in the United States could signal a somewhat uncomfortable reality for Tesla fans and car buyers, who have been vocal about their desire for a larger, full-size SUV.
Tesla has essentially moved in the opposite direction through its closure of the Model X and its continuing expansion of a vehicle that fits the bill for many, but not all.
Tesla brings closure to Model Y moniker with launch of new trim level
While CEO Elon Musk has said that there is the potential for the Model Y L, a longer wheelbase configuration of the vehicle, to enter the U.S. market late this year, it is not a guarantee.
Instead, Tesla has prioritized the need to develop vehicles and trim levels that cater to the future rollout of the Robotaxi ride-hailing service and a fully autonomous future.
But the company could be missing out on a massive opportunity, as SUVs are a widely popular body style in the U.S., especially for families, as the tighter confines of compact SUVs do not support the needs of a large family.
Although there are other companies out there that manufacture this body style, many are interested in sticking with Tesla because of the excellent self-driving platform, expansive charging infrastructure, and software performance the vehicles offer.
Additionally, the lack of variety from an aesthetic and feature standpoint has caused a bit of monotony throughout the Model Y lineup. Although Premium options are available, those three configurations only differ in terms of range and performance, at least for the most part, and the differences are not substantial.
Minor Expansions of the Model Y Fail to Address Family Needs for Space
Offering similar trim levels with slight differences to cater to each consumer’s needs is important. However, these vehicles keep a constant: cargo space and seating capacity.
Larger families need something that would compete with vehicles like the Chevrolet Tahoe, Ford Expedition, or Cadillac Escalade, and while the Model X was its largest offering, that is going away.
Tesla could fix this issue partially with the rollout of the Model Y L in the U.S., but only if it plans to continue offering various Model Y vehicles and expanding on its offerings with that car specifically. There have been hints toward a Cyber-inspired SUV in the past, but those hints do not seem to be a drastic focus of the company, given its autonomy mission.
Model Y Expansion Doesn’t Boost Performance, Value, or Space
You can throw all the different badges, powertrains, and range ratings on the same vehicle, it does not mean it’s going to sell better. The Model Y was already the best-selling vehicle in the world on several occasions. Adding more configurations seems to be milking it.
The true need of people, especially now that the Model X is going away, is going to be space. What vehicle fits the bill of a growing family, or one that has already outgrown the Model Y?
Not Expanding the Lineup with a New Vehicle Could Be a Missed Opportunity
The U.S. is the world’s largest market for three-row SUVs, yet Tesla’s focus on tweaking the existing Model Y ignores this. This could potentially result in the Osborne Effect, as sales of current models without capturing new customers who need more seating and versatility.
Expansions of the current Model Y offerings risk adding production complexity without addressing core demands, and given that the Model Y L is already being produced in China, it seems like it would be a reasonable decision to build a similar line in Texas.
Listening to consumers means introducing either the Model Y L here, or bringing a new, modern design to the lineup in the form of a full-size SUV.
Elon Musk
Elon Musk reiterates Tesla Optimus’ most sci-fi potential yet
Musk shared his comments in a series of posts on social media platform X.
Elon Musk recently reiterated one of the most ambitious forecasts for Tesla’s humanoid robot, Optimus, stating it could become the first real-world example of a Von Neumann machine. He also noted once more that Optimus would be Tesla’s biggest product.
Musk shared his comments in a series of posts on social media platform X.
Optimus as a von Neumann machine
In response to a post on X that pondered on sci-fi timelines becoming real, Musk wrote that “Optimus will be the first Von Neumann machine, capable of building civilization by itself on any viable planet.” In a separate post, Musk wrote that Optimus will be Tesla’s “biggest product ever,” a phrase he has used in the past to describe the humanoid robot’s importance to the electric vehicle maker.
A Von Neumann machine is a class of theoretical self-replicating systems originally proposed in the mid-20th century by the mathematician John von Neumann. In his concept, von Neumann described machines that could travel to other worlds, use local materials to create copies of themselves, and carry out large-scale tasks without outside intervention.
Elon Musk’s broader plans
Considering Musk’s comments, it appears that Optimus would eventually be capable of performing complex work autonomously in environments beyond Earth. If Optimus could achieve such a feat, it could very well unlock humanity’s capability to explore locations beyond Earth. The idea of space exploration becomes more than feasible.
Elon Musk has discussed space-based AI compute, large-scale robotic production, and the role of SpaceX’s Starship in transporting hardware and materials to other planets. While Musk did not detail how Optimus would fit with SpaceX’s exploration activities, his Von Neumann machine comments suggest he is looking at Tesla’s robotics as part of a potential interplanetary ecosystem.




