Connect with us

News

SpaceX begins Falcon Heavy booster deliveries for first launch in two years

The first of three new Falcon Heavy boosters has been spotted en route from Texas to Florida. (KFLY News 10)

Published

on

SpaceX’s first Falcon Heavy rocket launch in almost two years has entered the final stages of preparations – flight hardware acceptance testing, delivery, and assembly.

Comprised of five major elements, the vast majority of the challenges of building and launching Falcon Heavy come from the rocket’s three first-stage boosters – each more or less equivalent to a single-core Falcon 9 booster. Falcon Heavy’s twin side boosters are by far the most visually recognizable sign of that similar-but-different nature thanks to the need for aerodynamic nosecones instead of a Falcon booster’s normal interstage (a hollow cylinder).

While easily recognizable, the center core is the most technically Falcon Heavy-specific part of SpaceX’s partially-reusable heavy-lift rocket, requiring a unique airframe relative to side cores, which are essentially Falcon 9 boosters with a few major add-ons. It’s one of those Falcon Heavy side boosters that was spotted traveling by road from SpaceX’s test facilities to a Florida launch pad on Tuesday, January 26th.

For unknown reasons, although SpaceX currently has two reused Falcon Heavy side boosters that flew a second time on the US Air Force’s own STP-2 mission, the company has manufactured all-new boosters – likely at the US military’s request – for the rocket’s fourth launch. Rebadged from AFSPC-44 to USSF-44, that mission will see SpaceX attempt its first-ever direct-to-GEO launch, nominally launching a several-ton mystery satellite directly into geostationary orbit (GEO).

The main challenge of direct-to-GEO launches is the need for a given rocket’s upper stage to coast for hours in orbit and then reignite after that multi-hour coast period. The direct launch profile also demands more delta-V (propellant) than alternative transfer orbits (GTOs) – propellant that must be launched into orbit in addition to the customer’s payload. That requires the use of extremely large and/or efficient rockets, which is why SpaceX is launching USSF-44 with Falcon Heavy instead of a much cheaper and simpler Falcon 9.

Advertisement
-->
Falcon Heavy Block 5 debuted in April 2019. (SpaceX)

Unlike all other direct-to-GEO launches in history, however, Falcon Heavy Flight 4 will (hopefully) mark the first time a rocket launches a payload into geostationary orbit while still recovering a large portion of its first stage. After liftoff, Falcon Heavy side boosters B1064 and B1065 will attempt the first-ever dual drone ship landing at sea, while the rocket’s custom center core will be intentionally expended. According to CEO Elon Musk, that sacrificial-center-core configuration theoretically allows Falcon Heavy to achieve ~90% of its expendable performance while still recovering two otherwise reusable boosters.

As of the first USSF-44 side booster’s appearance in Louisiana, at least one other booster (most likely the mission’s second side booster) has already been spotted at SpaceX’s McGregor, Texas development facilities and may have already completed its own round of static fire acceptance testing. Given the three-month gap between the first USSF-44 side booster’s static fire and a side booster’s appearance in transport, there’s a distant possibility that the booster spotted on January 26th was the second of two side boosters to ship east, but that’s improbable given how much Falcon boosters stick out on the road.

Ultimately, assuming the second USSF-44 side booster’s static fire acceptance test went well, the only major Falcon Heavy-specific hardware SpaceX needs to ship from its Hawthorne, CA headquarters is center core B1066. An upper stage and payload fairing will also have to pass acceptance testing and head to Florida but both will likely be standard Falcon 9-issue hardware, minimizing small-batch uncertainty.

If SpaceX delivers B1066 to McGregor within the next week or two, the center core should be ready to ship to Florida by March or April, leaving SpaceX two or three months to integrate, static fire, and prepare Falcon Heavy for its fourth launch. According to the latest official information from the US military, USSF-44 is scheduled to launch no earlier than (NET) “late-spring 2021,” likely implying late-May or June.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading

Elon Musk

Elon Musk’s X goes down as users report major outage Friday morning

Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.

Published

on

Credit: Linda Yaccarino/X

Elon Musk’s X experienced an outage Friday morning, leaving large numbers of users unable to access the social media platform.

Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.

Downdetector reports

Users attempting to open X were met with messages such as “Something went wrong. Try reloading,” often followed by an endless spinning icon that prevented access, according to a report from Variety. Downdetector data showed that reports of problems surged rapidly throughout the morning.

As of 10:52 a.m. ET, more than 100,000 users had reported issues with X. The data indicated that 56% of complaints were tied to the mobile app, while 33% were related to the website and roughly 10% cited server connection problems. The disruption appeared to begin around 10:10 a.m. ET, briefly eased around 10:35 a.m., and then returned minutes later.

Credit: Downdetector

Previous disruptions

Friday’s outage was not an isolated incident. X has experienced multiple high-profile service interruptions over the past two years. In November, tens of thousands of users reported widespread errors, including “Internal server error / Error code 500” messages. Cloudflare-related error messages were also reported.

In March 2025, the platform endured several brief outages spanning roughly 45 minutes, with more than 21,000 reports in the U.S. and 10,800 in the U.K., according to Downdetector. Earlier disruptions included an outage in August 2024 and impairments to key platform features in July 2023.

Advertisement
-->
Continue Reading