Connect with us

News

SpaceX begins Falcon Heavy booster deliveries for first launch in two years

The first of three new Falcon Heavy boosters has been spotted en route from Texas to Florida. (KFLY News 10)

Published

on

SpaceX’s first Falcon Heavy rocket launch in almost two years has entered the final stages of preparations – flight hardware acceptance testing, delivery, and assembly.

Comprised of five major elements, the vast majority of the challenges of building and launching Falcon Heavy come from the rocket’s three first-stage boosters – each more or less equivalent to a single-core Falcon 9 booster. Falcon Heavy’s twin side boosters are by far the most visually recognizable sign of that similar-but-different nature thanks to the need for aerodynamic nosecones instead of a Falcon booster’s normal interstage (a hollow cylinder).

While easily recognizable, the center core is the most technically Falcon Heavy-specific part of SpaceX’s partially-reusable heavy-lift rocket, requiring a unique airframe relative to side cores, which are essentially Falcon 9 boosters with a few major add-ons. It’s one of those Falcon Heavy side boosters that was spotted traveling by road from SpaceX’s test facilities to a Florida launch pad on Tuesday, January 26th.

For unknown reasons, although SpaceX currently has two reused Falcon Heavy side boosters that flew a second time on the US Air Force’s own STP-2 mission, the company has manufactured all-new boosters – likely at the US military’s request – for the rocket’s fourth launch. Rebadged from AFSPC-44 to USSF-44, that mission will see SpaceX attempt its first-ever direct-to-GEO launch, nominally launching a several-ton mystery satellite directly into geostationary orbit (GEO).

The main challenge of direct-to-GEO launches is the need for a given rocket’s upper stage to coast for hours in orbit and then reignite after that multi-hour coast period. The direct launch profile also demands more delta-V (propellant) than alternative transfer orbits (GTOs) – propellant that must be launched into orbit in addition to the customer’s payload. That requires the use of extremely large and/or efficient rockets, which is why SpaceX is launching USSF-44 with Falcon Heavy instead of a much cheaper and simpler Falcon 9.

Advertisement
-->
Falcon Heavy Block 5 debuted in April 2019. (SpaceX)

Unlike all other direct-to-GEO launches in history, however, Falcon Heavy Flight 4 will (hopefully) mark the first time a rocket launches a payload into geostationary orbit while still recovering a large portion of its first stage. After liftoff, Falcon Heavy side boosters B1064 and B1065 will attempt the first-ever dual drone ship landing at sea, while the rocket’s custom center core will be intentionally expended. According to CEO Elon Musk, that sacrificial-center-core configuration theoretically allows Falcon Heavy to achieve ~90% of its expendable performance while still recovering two otherwise reusable boosters.

As of the first USSF-44 side booster’s appearance in Louisiana, at least one other booster (most likely the mission’s second side booster) has already been spotted at SpaceX’s McGregor, Texas development facilities and may have already completed its own round of static fire acceptance testing. Given the three-month gap between the first USSF-44 side booster’s static fire and a side booster’s appearance in transport, there’s a distant possibility that the booster spotted on January 26th was the second of two side boosters to ship east, but that’s improbable given how much Falcon boosters stick out on the road.

Ultimately, assuming the second USSF-44 side booster’s static fire acceptance test went well, the only major Falcon Heavy-specific hardware SpaceX needs to ship from its Hawthorne, CA headquarters is center core B1066. An upper stage and payload fairing will also have to pass acceptance testing and head to Florida but both will likely be standard Falcon 9-issue hardware, minimizing small-batch uncertainty.

If SpaceX delivers B1066 to McGregor within the next week or two, the center core should be ready to ship to Florida by March or April, leaving SpaceX two or three months to integrate, static fire, and prepare Falcon Heavy for its fourth launch. According to the latest official information from the US military, USSF-44 is scheduled to launch no earlier than (NET) “late-spring 2021,” likely implying late-May or June.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla arsonist who burned Cybertruck sees end of FAFO journey

The man has now reached the “Find Out” stage.

Published

on

Credit: U.S. Attorney’s Office, District of Arizona

A Mesa, Arizona man has been sentenced to five years in federal prison for setting fire to a Tesla location and vehicle in a politically motivated arson attack, federal prosecutors have stated. 

The April 2025 incident destroyed a Tesla Cybertruck, endangered first responders, and triggered mandatory sentencing under federal arson laws.

A five-year sentence

U.S. District Judge Diane J. Humetewa sentenced Ian William Moses, 35, of Mesa, Arizona, to 5 years in prison followed by 3 years of supervised release for maliciously damaging property and vehicles by means of fire. Moses pleaded guilty in October to all five counts brought by a federal grand jury. Restitution will be determined at a hearing scheduled for April 13, 2026.

As per court records, surveillance footage showed Moses arriving at a Tesla store in Mesa shortly before 2 a.m. on April 28, 2025, carrying a gasoline can and backpack. Investigators stated that he placed fire starter logs near the building, poured gasoline on the structure and three vehicles, and ignited the fire. The blaze destroyed a Tesla Cybertruck. Moses fled the scene on a bicycle and was arrested by Mesa police about a quarter mile away, roughly an hour later.

Advertisement
-->

Authorities said Moses was still wearing the same clothing seen on camera at the time of his arrest and was carrying a hand-drawn map marking the dealership’s location. Moses also painted the word “Theif” on the walls of the Tesla location, prompting jokes from social media users and Tesla community members. 

The “Finding Out” stage

U.S. Attorney Timothy Courchaine noted that Moses’ sentence reflects the gravity of his crime. He also highlighted that arson is never acceptable. 

“Arson can never be an acceptable part of American politics. Mr. Moses’ actions endangered the public and first responders and could have easily turned deadly. This five-year sentence reflects the gravity of these crimes and makes clear that politically fueled attacks on Arizona’s communities and businesses will be met with full accountability.”

Maricopa County Attorney Rachel Mitchell echoed the same sentiments, stating that regardless of Moses’ sentiments towards Elon Musk, his actions are not defensible. 

“This sentence sends a clear message: violence and intimidation have no place in our community. Setting fire to a business in retaliation for political or personal grievances is not protest, it is a crime. Our community deserves to feel safe, and this sentence underscores that Maricopa County will not tolerate political violence in any form.”

Advertisement
-->
Continue Reading

News

Tesla says its Texas lithium refinery is now operational and unlike anything in North America

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

Published

on

Credit: Tesla/YouTube

Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

A first-of-its-kind lithium refining process

In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.

According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.

Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted. 

Advertisement
-->

Musk calls the facility the largest lithium refinery in America

The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational. 

Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”

By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.

Advertisement
-->
Continue Reading

News

Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening

Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot

Published

on

Credit: Tesla/YouTube

Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.

Calacanis’ comments were shared publicly on X, and they were quite noteworthy.

The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.

“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,”  he noted.

The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.

Advertisement
-->

“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said. 

While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.

Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.

Continue Reading