News
SpaceX’s Falcon 9 Block 5 set for first expendable launch with USAF satellite
SpaceX’s most significant US Air Force launch contract yet is set to kick off with a (NET) December 18 launch of the first of 10 next-gen GPS satellites, known as GPS III Space Vehicle 1 (SV01). Thus far, SpaceX has won all five competitive GPS III launch contracts offered thus far by the USAF and – depending on Falcon 9’s performance this launch – could win several more.
Aside from contract victories, SpaceX’s first GPS III launch will be marked by yet another first for the company’s May 2018-debuted Falcon 9 Block 5 rocket. This first is not quite as desirable, though: sans landing legs and titanium grid fins, the new Block 5 booster will be expended after launch and will make no attempt to land.
Via @USAirForce: First GPS III satellite, AKA “Vespucci,” encapsulated in fairing on 12/7 ahead of #SpaceX Falcon 9 launch NET 12/18. This is the company’s first GPS mission and is expendable, so there will be no booster recovery.
(📸: @LockheedMartin) pic.twitter.com/5aOWy1tI5k
— Emre Kelly (@EmreKelly) December 11, 2018
At this point in time, the first official confirmation that Falcon 9 will be flying in an expendable configuration was given in a handful of comments made by Vice President of Launch and Build Reliability Hans Koenigsmann at a Dec. 5 press conference. While focused primarily on the topic at hand (SpaceX’s successful launch of the CRS-16 Cargo Dragon), members of the press managed to squeeze in a few minimally related questions which Hans graciously answered. Speaking about SpaceX’s imminent GPS III launch, Hans noted that,
“GPS is not landing a booster. It doesn’t have the landing hardware, or the majority of the landing hardware. … I looked at the booster yesterday, it’s in great shape and getting integrated in the hangar.
- GPS III SV01 is encapsulated in Falcon 9’s fairing. (SpaceX)
- GPS III SV01 is encapsulated in Falcon 9’s fairing. (SpaceX)
- GPS III SV01 is encapsulated in Falcon 9’s fairing. (SpaceX)
- Spotted by local photographer Tom McCool on November 27th, this 39A-located Falcon 9 booster is the likeliest candidate for the first GPS III launch. (Tom McCool)
Hans also told members of the audience that he believed the expendable profile had stemmed from a customer (i.e. USAF) requirement based on a need for extra performance:
“Regarding GPS not landing, I think this is a customer requirement to have all the performance for the mission. It’s a challenging mission.“
While there was previously some doubt as to whether Falcon 9 was actually incapable of attempting a booster landing after launch, Mr. Koenigsmann’s offhand suggestion that GPS III launches would be “challenging mission[s]” makes it far more likely that the USAF’s given mission profile genuinely demands all of Falcon 9’s performance – not enough propellant will remain for Falcon 9 to attempt recovery. There is, however, still some ambiguity in Hans’ answer.
If Falcon 9 will be expended solely as a consequence of mission performance requirements despite the oddly low payload mass (~3800 kg) and comparatively low-energy orbit (~20,000 km), the only possible explanation for no attempted recovery would be the need for Falcon 9’s upper stage to perform a lengthy second burn after a long coast in orbit. However, the mission parameters the USAF shopped around for would have placed the GPS III satellite into an elliptical orbit of 1000 km by 20,181 km, an orbit that would unequivocally allow Falcon 9 to attempt a drone ship recovery.
- Falcon 9 B1047.2 is seen here conducting its second successful drone ship landing. (SpaceX)
- In a more perfect world, Falcon 9 would have been responsible for the rainbow. (SpaceX)
- Lockheed Martin’s GPS III (SV 01-10) satellite.
- A GPS III spacecraft spreads one of its solar array wings. (USAF)
The reasoning behind this is simple: SpaceX routinely recovers Falcon 9 boosters after far more energetic launches. For example, Falcon 9’s November 15th launch placed the 5300 kg Es’hail-2 satellite into an orbit of 200 km by 37,700 km, after which Falcon 9 B1047.2 performed its second successful landing on drone ship Of Course I Still Love You. A prevailing second theory for the expendable mission lies in the Air Force’s notoriously stodgy and sometimes irrational revulsion at the slightest hint of risk or change – to minimize perceived risk, the USAF could have thus demanded that SpaceX expend Falcon 9 regardless of whether it was capable of doing so.
For GPS III SV01, it appears that only time will tell whether the satellite ends up in an orbit that can properly explain the booster’s premature demise. Given that SpaceX has a full four additional GPS III launches currently on the books, it will be a shame to see a veritable fleet of Falcon 9 Block 5 boosters tossed into the sea after just a single launch each.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
Investor's Corner
Tesla (TSLA) Q4 and FY 2025 earnings results
Tesla’s Q4 and FY 2025 earnings come on the heels of a quarter where the company produced over 434,000 vehicles, delivered over 418,000 vehicles, and deployed 14.2 GWh of energy storage products.
Tesla (NASDAQ:TSLA) has released its Q4 and FY 2025 earnings results in an update letter. The document was posted on the electric vehicle maker’s official Investor Relations website after markets closed today, January 28, 2025.
Tesla’s Q4 and FY 2025 earnings come on the heels of a quarter where the company produced over 434,000 vehicles, delivered over 418,000 vehicles, and deployed 14.2 GWh of energy storage products.
For the Full Year 2025, Tesla produced 1,654,667 and delivered 1,636,129 vehicles. The company also deployed a total of 46.7 GWh worth of energy storage products.
Tesla’s Q4 and FY 2025 results
As could be seen in Tesla’s Q4 and FY 2025 Update Letter, the company posted GAAP EPS of $0.24 and non-GAAP EPS of $0.50 per share in the fourth quarter. Tesla also posted total revenues of $24.901 billion. GAAP net income is also listed at $840 million in Q4.
Analyst consensus for Q4 has Tesla earnings per share falling 38% to $0.45 with revenue declining 4% to $24.74 billion, as per estimates from FactSet. In comparison, the consensus compiled by Tesla last week forecasted $0.44 per share on sales totaling $24.49 billion.
For FY 2025, Tesla posted GAAP EPS of $1.08 and non-GAAP EPS of $1.66 per share. Tesla also posted total revenues of $94.827 billion, which include $69.526 billion from automotive and $12.771 billion from the battery storage business. GAAP net income is also listed at $3.794 billion in FY 2025.
xAI Investment
Tesla entered an agreement to invest approximately $2 billion to acquire Series E preferred shares in Elon Musk’s artificial intelligence startup, xAI, as part of the company’s recently disclosed financing round. Tesla said the investment was made on market terms consistent with those agreed to by other participants in the round.
The investment aligns with Tesla’s strategy under Master Plan Part IV, which centers on bringing artificial intelligence into the physical world through products and services. While Tesla focuses on real-world AI applications, xAI is developing digital AI platforms, including its Grok large language model.
Below is Tesla’s Q4 and FY 2025 update letter.
TSLA-Q4-2025-Update by Simon Alvarez
News
Tesla rolls out new Supercharging safety feature in the U.S.
Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.
It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.
The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.
With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:
“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”
The feature was first spotted by Not a Tesla App.
This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.
For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.
Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.
This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.
News
LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
Humanoid robot battery deals
LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.
China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.
LF Energy Solution vs rivals
According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.
LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.







