News
SpaceX schedules first Falcon Heavy launch in two years in early October
For the first time in more than two years, SpaceX has a firm launch date for its next Falcon Heavy mission: October 9th, 2021.
Revealed on September 7th as part of a US Space Systems Command presentation at the 2021 Small Payload Ride Share Symposium, October 9th now appears to be the military’s official target date for SpaceX’s fourth Falcon Heavy launch ever. Currently the most powerful and capable commercial rocket in operation and likely to remain so – perhaps alongside Starship – for years to come, Falcon Heavy debuted in February 2018, successfully delivering a mock payload into interplanetary space.
After another 14 months of work, SpaceX then debuted Falcon Heavy Block 5 – an upgraded version of the rocket that took advantage of all of Block 5’s reusability, reliability, and performance improvements. Just two months after Falcon Heavy Block 5’s inaugural April 2019 launch, SpaceX launched the rocket for the third time, supporting a US Air Force rideshare mission, reusing both of Flight 2’s side boosters, and giving the US military a firsthand demonstration of the rocket’s capabilities. However, Falcon Heavy has not flown once since then.
For mostly unknown reasons, Falcon Heavy’s fourth launch – a US military mission known as USSF-44 (formerly AFSPC-44) – has gradually slipped from a late-2020 target to Q1, Q2, Q3, and finally Q4 (October) 2021. SpaceX only began qualifying USSF-44’s Falcon Heavy boosters at its McGregor, Texas test facilities in late September 2020, a few weeks after delays from late-2020 to February 2021 and June 2021 were quietly announced. At that point, the US was deep into the throes of the COVID-19 pandemic’s local peak.
Only in May 2021 did the US military finally directly address major USSF-44 and USSF-52 delays, blaming them on “payload readiness.” Given that the Space Force never blamed SpaceX or rocket availability for what is likely to be a full year of launch delays, the implication is that likely satellite manufacturers Northrop Grumman, Lockheed Martin, Maxar, or Boeing have run into major technical issues. It’s also possible that those payload-side delays have been caused by a combination of supply chain issues and constraints brought on by the ongoing global pandemic.
Meanwhile, USSF-44’s all-new Falcon Heavy rocket appears to have been at Cape Canaveral and more or less ready for flight since Q2 2021 and SpaceX has been hard at work qualifying at least two more Falcon Heavy center cores for at least two additional missions scheduled in H1 2022.
Scheduled to launch no earlier than (NET) October 9th, Falcon Heavy #4 will likely roll out to Kennedy Space Center Pad 39A around 5-7 days prior for a crucial static fire test and pad shakedown. SpaceX is currently scheduled to launch Crew Dragon’s all-private Inspiration4 mission as early as September 14th, giving the company around three weeks to modify Pad 39A and its transporter/erector, gather all four USSF-44 Falcon Heavy stages, and assemble the rocket. Another Crew Dragon mission is then scheduled to launch as early as October 31st, again leaving SpaceX less than three weeks to reconfigure Pad 39A.
Successfully completing that back-to-back-to-back Dragon-FH-Dragon manifest on schedule will be a significant challenge and delays are probably more likely than not. Nevertheless, Falcon Heavy will likely roll out to the launch pad for the first time in more than two years less than a month from today.

Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.