News
SpaceX President Gwynne Shotwell expects BFR spaceship hop tests in late 2019
Speaking on a panel titled “Future of Space” at a 2018 conference for the Defense Advanced Research Projects Agency’s (DARPA) 60th anniversary, SpaceX COO and President Gwynne Shotwell reportedly confirmed that SpaceX is still targeting integrated BFR tests in 2019, in the form of hops with the next-gen rocket’s upper stage (known as BFS).
Shotwell: think we’ll be “hopping” the second stage of BFR (the BFS) late next year. #DARPA60
— Jeff Foust (@jeff_foust) September 6, 2018
SpaceX has been gradually developing the BFR over the last two or so years, a rocket specifically intended to itself enable the sustainable, long-term colonization of Mars as quickly as practicable. The vast majority of that effort has been put funneled into the heart of the vehicle, a new propulsion system known as Raptor. Predicted years ago to be several times more powerful than the most modern iteration of Raptor, the rocket engine is targeting extreme efficiency both in its thrust to mass ratio and in the unique full-flow staged combustion cycle that will feed it propellant.
According to a major update from Elon Musk in late 2017 and early 2018, Raptor is expected to be roughly two times as powerful as the Block 5 Merlin 1D engines that power SpaceX’s Falcon 9 and Heavy rockets, while also being dramatically more efficient (judged from a measure known as Isp, or specific impulse) thanks to that aforementioned combustion cycle and the choice of liquid methane and oxygen as BFR’s propellant. In its sea level variant, SpaceX’s c. 2017 Raptor will generate 1700 kN (~380,000 lbf) of thrust – exactly 2X Merlin 1D’s current ~850 kN (~190,000 lbf) thrust rating. The vacuum variants of each rocket engine wind up with roughly 10% greater thrust.
SpaceX’s Mars city aspirations are functionally unachievable without an extraordinarily capable Raptor propulsion system ready to power BFR’s booster and spaceship. As such, initial hop tests (akin to the Grasshopper testing SpaceX used to flesh out Falcon 9 rocket recovery) can be expected to lean heavily towards a flight-test program for Raptor, perhaps mixed with some more serious structural experimentation and testing in later phases.
It’s also likely that initial Grasshopper-style testing of BFS will focus in part on the vehicle’s legs and general aerodynamic characteristics, absolutely critical if SpaceX hopes to land its first cargo and crew spaceships on unprepared Martian terrain – something that will have to be done to avoid major changes in early Mars mission strategy. Combined with some sort of autonomous radar (or perhaps a Tesla-assisted computer vision solution) and extensive prior planning (mapping out landing spots), those legs will need to be flexible enough to absorb any major terrain imbalances and prevent the rocket and its sensitive cargo from tipping over.
Equally importantly, hop testing – at least of the more extreme variety hinted at by CEO Elon Musk – will also allow SpaceX to test the aerodynamic behavior and control surfaces of the spaceship at points in Earth’s upper atmosphere that almost perfectly mirror the unusual atmospheric conditions on Mars, something that has already been exploited scientifically by both SpaceX and NASA during Falcon 9’s recovery development.
Per long-time SpaceNews correspondent Jeff Foust, Shotwell was paraphrased saying that she expected spaceship hop tests could begin as early as late 2019, admittedly a multi-month delay from “early 2019” comments made by Musk (and even Shotwell) earlier this year and late last year.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
Elon Musk
Starlink restrictions are hitting Russian battlefield comms: report
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
SpaceX’s decision to disable unauthorized Starlink terminals in Ukraine is now being felt on the battlefield, with Ukrainian commanders reporting that Russian troops have struggled to maintain assault operations without access to the satellite network.
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
Lt. Denis Yaroslavsky, who commands a special reconnaissance unit, stated that Russian assault activity noticeably declined for several days after the shutdown. “For three to four days after the shutdown, they really reduced the assault operations,” Yaroslavsky said.
Russian units had allegedly obtained Starlink terminals through black market channels and mounted them on drones and weapons systems, despite service terms prohibiting offensive military use. Once those terminals were blocked, commanders on the Ukrainian side reported improved battlefield ratios, as noted in a New York Post report.
A Ukrainian unit commander stated that casualty imbalances widened after the cutoff. “On any given day, depending on your scale of analysis, my sector was already achieving 20:1 (casuality rate) before the shutdown, and we are an elite unit. Regular units have no problem going 5:1 or 8:1. With Starlink down, 13:1 (casualty rate) for a regular unit is easy,” the unit commander said.
The restrictions come as Russia faces heavy challenges across multiple fronts. A late January report from the Center for Strategic and International Studies estimated that more than 1.2 million Russian troops have been killed, wounded, or gone missing since February 2022.
The Washington-based Institute for the Study of War also noted that activity from Russia’s Rubikon drone unit declined after Feb. 1, suggesting communications constraints from Starlink’s restrictions may be limiting operations. “I’m sure the Russians have (alternative options), but it takes time to maximize their implementation and this (would take) at least four to six months,” Yaroslavsky noted.
Elon Musk
Tesla Korea hiring AI Chip Engineers amid push for high-volume AI chips
Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”
In a recent post on X, Tesla Korea announced that it is hiring AI Chip Design Engineers as part of a project aimed at developing what the company describes as the world’s highest-volume AI chips. CEO Elon Musk later amplified the initiative.
Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”
“This project aims to develop AI chip architecture that will achieve the highest production volume in the world in the future,” Tesla Korea wrote in its post on X.
As per Tesla Korea, those who wish to apply for the AI Chip Design Engineer post should email Ai_Chips@Tesla.com and include “the three most challenging technical problems you have solved.”
Elon Musk echoed the hiring push in a separate post. “If you’re in Korea and want to work on chip design, fabrication or AI software, join Tesla!” he wrote.
The recruitment effort in South Korea comes as Tesla accelerates development of its in-house AI chips, which power its Full Self-Driving (FSD) system, Optimus humanoid robot, and data center training infrastructure.
Tesla has been steadily expanding its silicon development teams globally. In recent months, the company has posted roles in Austin and Palo Alto for silicon module process engineers across lithography, etching, and other chip fabrication disciplines, as noted in a Benzinga report.
Tesla Korea’s hiring efforts align with the company’s long-term goal of designing and producing AI chips at massive scale. Musk has previously stated that Tesla’s future AI chips could become the highest-volume AI processors in the world.
The move also comes amid Tesla’s broader expansion into AI initiatives. The company recently committed about $2 billion into xAI as part of a Series E funding round, reinforcing its focus on artificial intelligence across vehicles, robotics, and compute infrastructure.
Elon Musk
SpaceX and xAI tapped by Pentagon for autonomous drone contest
The six-month competition was launched in January and is said to carry a $100 million award.
SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News.
The six-month competition was launched in January and is said to carry a $100 million award.
Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.
Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.
The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.
The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.
The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.
Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.