Connect with us

News

SpaceX may have missed a rocket booster landing but it snagged both nosecone halves

Although SpaceX suffered an in-flight anomaly and lost a Falcon 9 booster, the company did manage to recover a reused payload fairing - pictured here - for the first time on March 18th. (Richard Angle)

Published

on

Although SpaceX sadly lost a record-breaking rocket booster and suffered a significant in-flight anomaly during its sixth Starlink launch, the company later revealed that it successfully recovered both of Falcon 9’s nosecone halves.

Starlink V1 L5 is now the second time ever that SpaceX – or anyone, for that matter – has successfully reused an orbital-class launch vehicle payload fairing, while the mission also marked the first time that SpaceX managed to recover a reused Falcon fairing. The burn from booster issues certainly isn’t fully salved, as twin fairing catchers Ms. Tree and Ms. Chief both missed their fairing catch attempts, but both twice-flown fairing halves were still successfully scooped out of the Atlantic Ocean before they were torn apart.

This is perhaps the most important milestone for SpaceX’s fairing recovery and reuse program since the first successful catch (June 2019) and first successful reuse (November 2019). With a twice-flown fairing now safely in hand for the first time, SpaceX will hopefully be able to dramatically expand its understanding of how flight-proven fairings – especially those that were fished out of the sea – stand up to launch conditions. If these flight-proven halves appear to be in great condition, it could be a boon for the near-term future of fairing recovery and reuse.

Although SpaceX suffered an in-flight anomaly and lost a Falcon 9 booster, the company did manage to recover its first reused payload fairing on March 18th. (SpaceX)

Catching fairings = hard

SpaceX has now been attempting to catch Falcon payload fairings for more than two years, beginning back in February 2018 after many months of additional development prior. The first successful catch came on the sixth post-launch attempt, followed immediately by a second successful catch two months later (August 2019). That back-to-back recovery appears to have been a bit of a fluke, however, with only one additional partial success (one of two ships caught a half) out of the five subsequent attempts.

By all appearances, accurately and reliably catching parasailing Falcon fairings is a spectacularly unforgiving challenge. That shouldn’t come as a huge surprise: each Falcon fairing will typically reach top speeds of 2.5+ km/s (1.5+ mi/s), technically reach space (100+ km or 63+ mi), and travel 500-1000+ km (300-600 mi) downrange before even remotely entering the vicinity of the ships designed to catch them out of the air.

A Falcon fairing sails under a lightweight GPS-guided parafoil. (SpaceX)
Ms. Tree’s second successful fairing catch occurred on August 6th. (SpaceX)

Likely weighing just ~1000 kg (2200 lb) apiece, the lightweight, sail-like nature of SpaceX’s carbon fiber-aluminum honeycomb payload fairings is both a blessing and a curse. While it means they can effectively reenter Earth’s atmosphere at hypersonic velocities with next to no heat shield, it also means that free-falling and parasailing fairing halves are at the full mercy of said atmosphere after reentry, bowing to winds and air currents like dandelions in a breeze.

Fairing halves ultimately spend something like 30-40 minutes parasailing through the atmosphere after parafoil deployment, creating vast uncertainties when it comes to local weather and the general behavior of the atmosphere. Even excluding weather, the average fairing catch attempt is roughly akin to throwing an average marble into a kitchen sink from more than a kilometer (0.8 mi) away.

Advertisement
-->
SpaceX’s first successful Falcon fairing catch was preceded by a spectacular light show as the fairing reentered Earth’s atmosphere at hypersonic velocities. (SpaceX/Teslarati)

Soft ocean landings: quite a bit easier

What SpaceX has effectively discovered is that while catching fairing halves may be almost comically difficult, recovering the same halves intact is easily doable if the goal instead is to gently pick them up off the ocean surface. Of the eleven catch attempts SpaceX has made, all but two were followed by recovery vessels extracting one or both fairing halves -intact – from the ocean.

Most notably, though, SpaceX has yet to reuse any of the three Falcon fairing halves that were caught with Ms. Tree. Instead, both the first and second reuses used fairing halves that had been fished onto recovery ships after gentle Atlantic Ocean landings.

SpaceX successfully recovered both Falcon Heavy fairing halves from the Atlantic Ocean after its April 2019 commercial launch debut. (SpaceX/Elon Musk)

SpaceX has ultimately chosen to tackle the much harder reusability challenge – reusing fairings that have been partially immersed in saltwater – first, and done so quite successfully. Critically, the first reused fairing was unable to be recovered – even by sea – due to bad weather in the area, meaning that Wednesday’s recovery was a first for rare flight-proven fairing hardware. Given all the challenges Falcon fairings face with water sealing, corrosion, and contamination after water landings, it would be little surprise to learn that the second reused fairing is not exactly in pristine condition.

However, if it looks as good or better than SpaceX’s less-informed expectations, there’s a chance that it could open the floodgates for the full-scale pursuit of routine waterlogged fairing reuse. Even better, if the Starlink v0.9 and V1 L5 fairing halves have been recovered in great condition, there might be a chance to reuse Falcon fairings multiple times, following in the footsteps of the rocket boosters they launch on top of.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla adds 15th automaker to Supercharger access in 2025

Published

on

tesla supercharger
Credit: Tesla

Tesla has added the 15th automaker to the growing list of companies whose EVs can utilize the Supercharger Network this year, as BMW is the latest company to gain access to the largest charging infrastructure in the world.

BMW became the 15th company in 2025 to gain Tesla Supercharger access, after the company confirmed to its EV owners that they could use any of the more than 25,000 Supercharging stalls in North America.

Newer BMW all-electric cars, like the i4, i5, i7, and iX, are able to utilize Tesla’s V3 and V4 Superchargers. These are the exact model years, via the BMW Blog:

  • i4: 2022-2026 model years
  • i5: 2024-2025 model years
    • 2026 i5 (eDrive40 and xDrive40) after software update in Spring 2026
  • i7: 2023-2026 model years
  • iX: 2022-2025 model years
    • 2026 iX (all versions) after software update in Spring 2026

With the expansion of the companies that gained access in 2025 to the Tesla Supercharger Network, a vast majority of non-Tesla EVs are able to use the charging stalls to gain range in their cars.

So far in 2025, Tesla has enabled Supercharger access to:

  • Audi
  • BMW
  • Genesis
  • Honda
  • Hyundai
  • Jaguar Land Rover
  • Kia
  • Lucid
  • Mercedes-Benz
  • Nissan
  • Polestar
  • Subaru
  • Toyota
  • Volkswagen
  • Volvo

Drivers with BMW EVs who wish to charge at Tesla Superchargers must use an NACS-to-CCS1 adapter. In Q2 2026, BMW plans to release its official adapter, but there are third-party options available in the meantime.

They will also have to use the Tesla App to enable Supercharging access to determine rates and availability. It is a relatively seamless process.

Continue Reading

News

Tesla adds new feature that will be great for crowded parking situations

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

Published

on

Credit: Grok

Tesla has added a new feature that will be great for crowded parking lots, congested parking garages, or other confusing times when you cannot seem to pinpoint where your car went.

Tesla has added a new Vehicle Locator feature to the Tesla App with App Update v4.51.5.

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

While there are several new features, which we will reveal later in this article, perhaps one of the coolest is that of the Vehicle Locator, which will now point you in the direction of your car using a directional arrow on the home screen. This is similar to what Apple uses to find devices:

In real time, the arrow gives an accurate depiction of which direction you should walk in to find your car. This seems extremely helpful in large parking lots or unfamiliar shopping centers.

Getting to your car after a sporting event is an event all in itself; this feature will undoubtedly help with it:

Tesla’s previous app versions revealed the address at which you could locate your car, which was great if you parked on the street in a city setting. It was also possible to use the map within the app to locate your car.

However, this new feature gives a more definitive location for your car and helps with the navigation to it, instead of potentially walking randomly.

It also reveals the distance you are from your car, which is a big plus.

Along with this new addition, Tesla added Photobooth features, Dog Mode Live Activity, Custom Wraps and Tints for Colorizer, and Dashcam Clip details.

All in all, this App update was pretty robust.

Continue Reading

Elon Musk

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

Published

on

Credit: Tesla

Tesla CEO Elon Musk shaded Waymo in a post on X on Wednesday, stating the company “never really had a chance” and that it “will be obvious in hindsight.”

Tesla and Waymo are the two primary contributors to the self-driving efforts in the United States, with both operating driverless ride-hailing services in the country. Tesla does have a Safety Monitor present in its vehicles in Austin, Texas, and someone in the driver’s seat in its Bay Area operation.

Musk says the Austin operation will be completely void of any Safety Monitors by the end of the year.

With the two companies being the main members of the driverless movement in the U.S., there is certainly a rivalry. The two have sparred back and forth with their geofences, or service areas, in both Austin and the Bay Area.

While that is a metric for comparison now, ultimately, it will not matter in the coming years, as the two companies will likely operate in a similar fashion.

Waymo has geared its business toward larger cities, and Tesla has said that its self-driving efforts will expand to every single one of its vehicles in any location globally. This is where the true difference between the two lies, along with the fact that Tesla uses its own vehicles, while Waymo has several models in its lineup from different manufacturers.

The two also have different ideas on how to solve self-driving, as Tesla uses a vision-only approach. Waymo relies on several things, including LiDAR, which Musk once called “a fool’s errand.”

This is where Tesla sets itself apart from the competition, and Musk highlighted the company’s position against Waymo.

Jeff Dean, the Chief Scientist for Google DeepMind, said on X:

“I don’t think Tesla has anywhere near the volume of rider-only autonomous miles that Waymo has (96M for Waymo, as of today). The safety data is quite compelling for Waymo, as well.”

Musk replied:

“Waymo never really had a chance against Tesla. This will be obvious in hindsight.”

Tesla stands to have a much larger fleet of vehicles in the coming years if it chooses to activate Robotaxi services with all passenger vehicles. A simple Over-the-Air update will activate this capability, while Waymo would likely be confined to the vehicles it commissions as Robotaxis.

Continue Reading