News
SpaceX retracts latest rocket’s landing legs in impressive feat of durability
A SpaceX Falcon 9 booster had all four of its landing legs successfully retracted after a flawless fourth launch and landing, highlighting the impressive margins and durability of the rocket’s upgraded Block 5 design.
On April 22nd, Falcon 9 booster B1051 lifted off on its fourth orbital-class mission – also its second 60-satellite Starlink launch this. Around eight minutes later, B1051 successfully landed aboard drone ship Of Course I Still Love You (OCISLY), ending a back-to-back streak of failed ocean recoveries for SpaceX and verifying that the cause of a March 2020 in-flight engine failure had been rectified. After the loss of booster B1056 and B1048 in February and March, it was also simply a relief to have B1051 safe and sound aboard OCISLY, ensuring that the rocket should be able to support another launch in the near future.
After sailing in port on April 26th, SpaceX technicians lifted a booster off of drone ship OCISLY’s deck for the first time since late January – coincidentally (or maybe not) also Falcon 9 B1051. Two days after its arrival in port and transfer onto dry land, SpaceX successfully retracted all of the massive booster’s landing legs in less than three hours and had it ready for transport less than two hours after that. While B1051’s brisk fourth recovery didn’t break any records, it still serves as a reminder of Falcon 9’s impressive durability in light of the landing it experienced just ~85 days prior.

B1051’s successful leg retraction after its fourth launch and landing is particularly impressive for one main reason: after its third launch, the booster suffered perhaps the hardest drone ship landing any Block 5 rocket has thus far experienced.
Taken in March 2019 and February 2020 after Falcon 9 B1051’s first and third launches and landings, the photo below reveals just how hard a landing B1051 experienced after its Starlink-4 launch. Built almost entirely out of carbon fiber composites and mounted directly to the rocket’s tank walls, Falcon’s telescoping landing legs rely on something known as a ‘crush core’ – made out of aluminum honeycomb – that’s designed to intentionally collapse under a very specific amount of stress.

The crush core is situated in the very tip of the cylindrical leg booms and is easily visible above on the left, while it has nearly disappeared in the right (after) photo after an exceptionally hard landing used up what looks like 90+% of the booster’s safety margin. In other words, if B1051 had landed just a little harder after its third launch, it’s possible that the booster’s landing leg booms would have used up all their crush cores and been driven into the kerosene tank they attach to, potentially totaling the Falcon 9 first stage.
Instead, while clearly a rough landing, B1051 appears to have had its landing leg crush cores replaced and was made ready for another Starlink launch less than three months after that exceptionally hard landing. In other words, despite the rarity of similar hard landings over dozens of recent booster landings, SpaceX was apparently almost entirely unconcerned about the rocket’s state.


As usual, the company almost certainly checked the structural integrity of B1051’s major welds and landing leg hardware before certifying the vehicle for its fourth launch, but the fact that its reuse was so seemingly unexceptional is a testament to the sheer durability of SpaceX’s reusable rocket boosters. Thanks to the modularity of its design, B1051 should have no trouble performing at least several more orbital-class launches over the next several months (if not years). More likely than not, the Falcon 9 Block 5 rocket will fly again just two or so months from now on another Starlink mission, of which SpaceX has 20+ nominally scheduled this year alone.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.
News
Tesla FSD (Supervised) is about to go on “widespread” release
In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”
Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin.
The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.
FSD V14.2 improvements
FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.
A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.
Elon Musk’s predicted wide release
The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”
FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles.
News
Tesla FSD V14.2 starts rolling out to initial batch of vehicles
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.
So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well.
Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots.
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.


Release Notes
2025.38.9.5
Currently Installed
FSD (Supervised) v14.2
Full Self-Driving (Supervised) v14.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
- Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
Upcoming Improvements:
- Overall smoothness and sentience
- Parking spot selection and parking quality