Connect with us

News

SpaceX retracts latest rocket’s landing legs in impressive feat of durability

Falcon 9 B1051 and three of its four landing legs are pictured here on April 26th after the booster's fourth successful launch and landing. (Richard Angle)

Published

on

A SpaceX Falcon 9 booster had all four of its landing legs successfully retracted after a flawless fourth launch and landing, highlighting the impressive margins and durability of the rocket’s upgraded Block 5 design.

On April 22nd, Falcon 9 booster B1051 lifted off on its fourth orbital-class mission – also its second 60-satellite Starlink launch this. Around eight minutes later, B1051 successfully landed aboard drone ship Of Course I Still Love You (OCISLY), ending a back-to-back streak of failed ocean recoveries for SpaceX and verifying that the cause of a March 2020 in-flight engine failure had been rectified. After the loss of booster B1056 and B1048 in February and March, it was also simply a relief to have B1051 safe and sound aboard OCISLY, ensuring that the rocket should be able to support another launch in the near future.

After sailing in port on April 26th, SpaceX technicians lifted a booster off of drone ship OCISLY’s deck for the first time since late January – coincidentally (or maybe not) also Falcon 9 B1051. Two days after its arrival in port and transfer onto dry land, SpaceX successfully retracted all of the massive booster’s landing legs in less than three hours and had it ready for transport less than two hours after that. While B1051’s brisk fourth recovery didn’t break any records, it still serves as a reminder of Falcon 9’s impressive durability in light of the landing it experienced just ~85 days prior.

SpaceX has been routinely retracting Falcon 9 landing legs for almost a full year. (Tom Cross)

B1051’s successful leg retraction after its fourth launch and landing is particularly impressive for one main reason: after its third launch, the booster suffered perhaps the hardest drone ship landing any Block 5 rocket has thus far experienced.

Taken in March 2019 and February 2020 after Falcon 9 B1051’s first and third launches and landings, the photo below reveals just how hard a landing B1051 experienced after its Starlink-4 launch. Built almost entirely out of carbon fiber composites and mounted directly to the rocket’s tank walls, Falcon’s telescoping landing legs rely on something known as a ‘crush core’ – made out of aluminum honeycomb – that’s designed to intentionally collapse under a very specific amount of stress.

(Tom Cross/Richard Angle)

The crush core is situated in the very tip of the cylindrical leg booms and is easily visible above on the left, while it has nearly disappeared in the right (after) photo after an exceptionally hard landing used up what looks like 90+% of the booster’s safety margin. In other words, if B1051 had landed just a little harder after its third launch, it’s possible that the booster’s landing leg booms would have used up all their crush cores and been driven into the kerosene tank they attach to, potentially totaling the Falcon 9 first stage.

Instead, while clearly a rough landing, B1051 appears to have had its landing leg crush cores replaced and was made ready for another Starlink launch less than three months after that exceptionally hard landing. In other words, despite the rarity of similar hard landings over dozens of recent booster landings, SpaceX was apparently almost entirely unconcerned about the rocket’s state.

Advertisement
(Richard Angle)
(Richard Angle)

As usual, the company almost certainly checked the structural integrity of B1051’s major welds and landing leg hardware before certifying the vehicle for its fourth launch, but the fact that its reuse was so seemingly unexceptional is a testament to the sheer durability of SpaceX’s reusable rocket boosters. Thanks to the modularity of its design, B1051 should have no trouble performing at least several more orbital-class launches over the next several months (if not years). More likely than not, the Falcon 9 Block 5 rocket will fly again just two or so months from now on another Starlink mission, of which SpaceX has 20+ nominally scheduled this year alone.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla says texting and driving capability is coming ‘in a month or two’

“In the next month or two, we’re going to look at the safety statistics, but we’re going to allow you to text and drive, essentially.”

Published

on

Credit: Tesla

Tesla CEO Elon Musk said that within the next month or two, the company will be able to open the ability for people to text and drive because its Full Self-Driving suite will be robust enough to allow drivers to take their attention away from the road.

In its current state, Tesla Full Self-Driving is a supervised driver assistance suite that requires the vehicle operator to maintain control of the vehicle and pay attention to the road surroundings.

However, the company has been aiming to release a fully autonomous version of the Full Self-Driving suite for years, teasing its future potential and aiming to release a Level 5 suite as soon as possible.

CEO Elon Musk believes the company is on the cusp of something drastic, according to what he said at yesterday’s Annual Shareholder Meeting.

One thing Musk hinted at was that the company should be able to allow those sitting in the driver’s seat of their cars to text and drive “in the next month or two,” as long as the statistics look good.

He said:

“In the next month or two, we’re going to look at the safety statistics, but we’re going to allow you to text and drive, essentially.”

The company recently transitioned to its v14 Full Self-Driving suite, which is its most robust to date, and recently expanded to Cybertruck, completing its rollout across the vehicle lineup.

Currently, Tesla is running v14.1.5, and when major improvements are made, that second number will increase, meaning v14.2 will be the next substantial improvement.

Musk said that v14.3 will be when you can “pretty much fall asleep and wake up at your destination.”

We’ve heard a considerable amount of similar statements in the past, and Tesla owners have been conditioned to take some of these timeframes with autonomous driving with a grain of salt.

However, with the upgrades in FSD over the past few months, especially with the rollout of Robotaxi in Austin, which does not utilize anyone in the driver’s seat for local roads, it does not seem as if autonomy is that far off for Tesla.

Continue Reading

News

Tesla Semi undergoes major redesign as dedicated factory preps for deliveries

The Semi has been one of the most anticipated products in the Tesla lineup due to the disruption it could cause in the trucking industry.

Published

on

Tesla put its all-electric Semi truck through quite a major redesign as its dedicated factory for the vehicle is preparing for initial deliveries to the public starting next year.

The Semi has been one of the most anticipated products in the Tesla lineup due to the disruption it could cause in the trucking industry.

It has already been in numerous pilot programs for some pretty large companies over the past couple of years, PepsiCo. being one of them, and it is moving toward first deliveries to other companies sometime in 2026.

Yesterday at the 2025 Annual Shareholder Meeting, Tesla unveiled its new Semi design, which underwent a pretty significant facelift to match the aesthetic and vibe of the other vehicles in the company’s lineup.

Additionally, Tesla announced some other improvements, including changes to efficiency, and some other changes that we did not get details on yet.

The first change was to the design of the Semi, as Tesla adopted its blade-like light bar for the Class 8 truck, similar to the one that is used on the new Model Y and the Cybertruck:

There also appear to be a handful of design changes that help with aerodynamics, as its efficiency has increased to 1.7 kWh per mile.

Tesla also said it has an increased payload capability, which will help companies to haul more goods per trip.

All of these changes come as the company’s Semi Factory, which is located on the same property as its Gigafactory in Reno, Nevada, is just finishing up. In late October, it was shown that the Semi facility is nearly complete, based on recent drone imagery from factory observer HinrichsZane on X:

Tesla Semi factory looks nearly complete

The factory will be capable of producing about 50,000 Tesla Semi units annually when it is completely ramped. The company has major plans to help get the Semi in more fleets across the United States.

Other entities are also working to develop a charging corridor for electric Class 8 trucks. The State of California was awarded $102 million to develop a charging corridor that spans from Washington to Southern California.

Another corridor is being developed that spans from Southern California to Texas, and 49 applicants won $636 million from the Department of Transportation for it.

Tesla requested funding for it, but was denied.

The Semi has been a staple in several companies’ fleets over the past few years, most notably that of Frito-Lay and PepsiCo., who have reported positive experiences thus far.

Musk said last year that the Semi had “ridiculous demand.”

Continue Reading

News

Tesla Cybercab production starts Q2 2026, Elon Musk confirms

Elon Musk highlighted that the fully autonomous vehicle will be the first Tesla designed specifically for unsupervised self-driving.

Published

on

Credit: Tesla/X

Tesla CEO Elon Musk confirmed that production of the company’s autonomous Cybercab will begin in April 2026, and its production targets will be quite ambitious. 

Speaking at Tesla’s 2025 Annual Shareholder Meeting, Musk highlighted that the fully autonomous vehicle will be the first Tesla designed specifically for unsupervised self-driving.

A robotaxi built for an autonomous world

Musk described the Cybercab as a clean-slate design optimized for autonomy, with no steering wheel, pedals, or side mirrors. “It’s very much optimized for the lowest cost per mile in an autonomous mode,” Musk said, adding that every Tesla produced in recent years already carries the hardware needed for full self-driving.

The Cybercab will be assembled at Giga Texas and will serve as the company’s flagship entry into the commercial robotaxi market. Musk emphasized that the project represents Tesla’s next evolutionary step in combining vehicle manufacturing, artificial intelligence, and mobility services.

One Cybercab every ten seconds

Musk reiterated that the Cybercab’s production process is more closely modeled on consumer electronics assembly than on traditional automotive manufacturing. This should pave the way for outputs that far exceed conventional automotive products.

Advertisement

“That production is happening right here in this factory, and we’ll be starting production in April next year. The manufacturing system is unlike any other car. The manufacturing system of the Cybercab, it’s closer to a high volume consumer electronics device than it is a car manufacturing line. So the net result is that I think we should be able to achieve, I think, ultimately, less than a 10-second cycle time, basically a unit every 10 seconds.

“What that would mean is you could get on a line that would normally produce, say, 500,000 cars a year at a one minute cycle time, Model Y. This would be maybe as much as 2 million or 3 million, maybe ultimately it’s theoretically possible to achieve a 5 million unit production line if you can get to the 5-second cycle time,” the CEO said.

Continue Reading

Trending