News
SpaceX’s second flight-proven Starship makes way for next ‘test tank’
Four days after the rocket’s hop debut, SpaceX has safely returned its second flight-proven Starship prototype to an assembly building for refurbishment, making way for a new ‘test tank’ at the launch pad.
Known as Starship serial number six (SN6), the ~30m (~100 ft) tall prototype became the second full-scale Starship to take flight on September 3rd, following in SN5’s footsteps to reach a similar ~150m (~500 ft) apogee before gently landing. More or less identical to SN5’s own August 4th hop debut, it marked the second hop of an entirely separate Starship prototype in 30 days – a feat almost certainly unprecedented in the history of large-scale rocket development.
Significant work remains to speed up the post-hop process, which appears to currently amount to some ~48 hours of gradual, uncontrolled detanking and depressurization. Regardless, a bit least than four days after a successful launch and landing, Starship SN6 was rolled back to SpaceX’s Boca Chica, Texas production facilities around 9am CDT, September 7th. Just five hours after that, Starship test tank SN7.1 – the second in a planned series of two – was loaded onto the same transporter and shipped down the road to the launch pad.

Since its first hop, over the last 30 days, SpaceX has inspected and refurbished Starship SN5 to help support what CEO Elon Musk has described as “several short hops to smooth out [the] launch process.” SN6’s success (and the intact launch infrastructure it thus left behind) now means that SN5 will almost certainly be reused in the near future. It’s unclear how many hops will be needed for Starship launch operations to be optimized into a smooth process but 4+ (2 x SN5, 2 x SN6) seems to be a safe bet.
However, SN5’s second hop will have to wait. Up next on SpaceX’s South Texas manifest is the fifth in a series of intentionally destructive tank tests, used to qualify (or disqualify) new Starship designs, manufacturing techniques, and materials. Known as Starship SN7.1, this particular test tank is the second in a series of two meant to determine the capabilities of a new steel alloy.
The first tank, SN7, was (successfully) tested to destruction on June 23rd and is believed to have reached record pressures before it failed. Perhaps more importantly, an unintentional leak during one of SN7’s first pressure test attempts proved that the new 304L (-ish) steel alloy it was built out of would make certain failure modes far less catastrophic (i.e. a leak instead of a violent rupture).


SN7 was a single basic test tank: an upper dome, lower dome, and three steel rings. SN7.1 is significantly more complex, adding a skirt section with hold-down clamps at the base and replacing the aft tank dome with a thrust dome and thrust puck (Raptor engine attachment points). SN7 was simply loaded with cryogenic liquid nitrogen and pressurized. SN7.1 – thanks to the addition of a thrust puck and skirt section – will perform similar cryo pressure tests but will also be subject to the simulated thrust of three Raptor engines with a series of hydraulic rams.
As of now, SpaceX has road closures scheduled today and tomorrow (Sept 8th) from 8am to 8pm CDT – tomorrow likely being the earliest opportunity for SN7.1 testing to begin.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.
News
Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade
Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.
Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.
Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.
Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error.
More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report.
Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.
Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.
Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.
“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted.
Elon Musk
Elon Musk’s X goes down as users report major outage Friday morning
Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.
Elon Musk’s X experienced an outage Friday morning, leaving large numbers of users unable to access the social media platform.
Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.
Downdetector reports
Users attempting to open X were met with messages such as “Something went wrong. Try reloading,” often followed by an endless spinning icon that prevented access, according to a report from Variety. Downdetector data showed that reports of problems surged rapidly throughout the morning.
As of 10:52 a.m. ET, more than 100,000 users had reported issues with X. The data indicated that 56% of complaints were tied to the mobile app, while 33% were related to the website and roughly 10% cited server connection problems. The disruption appeared to begin around 10:10 a.m. ET, briefly eased around 10:35 a.m., and then returned minutes later.

Previous disruptions
Friday’s outage was not an isolated incident. X has experienced multiple high-profile service interruptions over the past two years. In November, tens of thousands of users reported widespread errors, including “Internal server error / Error code 500” messages. Cloudflare-related error messages were also reported.
In March 2025, the platform endured several brief outages spanning roughly 45 minutes, with more than 21,000 reports in the U.S. and 10,800 in the U.K., according to Downdetector. Earlier disruptions included an outage in August 2024 and impairments to key platform features in July 2023.