News
SpaceX’s second flight-proven Starship makes way for next ‘test tank’
Four days after the rocket’s hop debut, SpaceX has safely returned its second flight-proven Starship prototype to an assembly building for refurbishment, making way for a new ‘test tank’ at the launch pad.
Known as Starship serial number six (SN6), the ~30m (~100 ft) tall prototype became the second full-scale Starship to take flight on September 3rd, following in SN5’s footsteps to reach a similar ~150m (~500 ft) apogee before gently landing. More or less identical to SN5’s own August 4th hop debut, it marked the second hop of an entirely separate Starship prototype in 30 days – a feat almost certainly unprecedented in the history of large-scale rocket development.
Significant work remains to speed up the post-hop process, which appears to currently amount to some ~48 hours of gradual, uncontrolled detanking and depressurization. Regardless, a bit least than four days after a successful launch and landing, Starship SN6 was rolled back to SpaceX’s Boca Chica, Texas production facilities around 9am CDT, September 7th. Just five hours after that, Starship test tank SN7.1 – the second in a planned series of two – was loaded onto the same transporter and shipped down the road to the launch pad.

Since its first hop, over the last 30 days, SpaceX has inspected and refurbished Starship SN5 to help support what CEO Elon Musk has described as “several short hops to smooth out [the] launch process.” SN6’s success (and the intact launch infrastructure it thus left behind) now means that SN5 will almost certainly be reused in the near future. It’s unclear how many hops will be needed for Starship launch operations to be optimized into a smooth process but 4+ (2 x SN5, 2 x SN6) seems to be a safe bet.
However, SN5’s second hop will have to wait. Up next on SpaceX’s South Texas manifest is the fifth in a series of intentionally destructive tank tests, used to qualify (or disqualify) new Starship designs, manufacturing techniques, and materials. Known as Starship SN7.1, this particular test tank is the second in a series of two meant to determine the capabilities of a new steel alloy.
The first tank, SN7, was (successfully) tested to destruction on June 23rd and is believed to have reached record pressures before it failed. Perhaps more importantly, an unintentional leak during one of SN7’s first pressure test attempts proved that the new 304L (-ish) steel alloy it was built out of would make certain failure modes far less catastrophic (i.e. a leak instead of a violent rupture).


SN7 was a single basic test tank: an upper dome, lower dome, and three steel rings. SN7.1 is significantly more complex, adding a skirt section with hold-down clamps at the base and replacing the aft tank dome with a thrust dome and thrust puck (Raptor engine attachment points). SN7 was simply loaded with cryogenic liquid nitrogen and pressurized. SN7.1 – thanks to the addition of a thrust puck and skirt section – will perform similar cryo pressure tests but will also be subject to the simulated thrust of three Raptor engines with a series of hydraulic rams.
As of now, SpaceX has road closures scheduled today and tomorrow (Sept 8th) from 8am to 8pm CDT – tomorrow likely being the earliest opportunity for SN7.1 testing to begin.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla confirms that work on Dojo 3 has officially resumed
“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo 3,” Elon Musk wrote in a post on X.
Tesla has restarted work on its Dojo 3 initiative, its in-house AI training supercomputer, now that its AI5 chip design has reached a stable stage.
Tesla CEO Elon Musk confirmed the update in a recent post on X.
Tesla’s Dojo 3 initiative restarted
In a post on X, Musk said that with the AI5 chip design now “in good shape,” Tesla will resume work on Dojo 3. He added that Tesla is hiring engineers interested in working on what he expects will become the highest-volume AI chips in the world.
“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo3. If you’re interested in working on what will be the highest volume chips in the world, send a note to AI_Chips@Tesla.com with 3 bullet points on the toughest technical problems you’ve solved,” Musk wrote in his post on X.
Musk’s comment followed a series of recent posts outlining Tesla’s broader AI chip roadmap. In another update, he stated that Tesla’s AI4 chip alone would achieve self-driving safety levels well above human drivers, AI5 would make vehicles “almost perfect” while significantly enhancing Optimus, and AI6 would be focused on Optimus and data center applications.
Musk then highlighted that AI7/Dojo 3 will be designed to support space-based AI compute.
Tesla’s AI roadmap
Musk’s latest comments helped resolve some confusion that emerged last year about Project Dojo’s future. At the time, Musk stated on X that Tesla was stepping back from Dojo because it did not make sense to split resources across multiple AI chip architectures.
He suggested that clustering large numbers of Tesla AI5 and AI6 chips for training could effectively serve the same purpose as a dedicated Dojo successor. “In a supercomputer cluster, it would make sense to put many AI5/AI6 chips on a board, whether for inference or training, simply to reduce network cabling complexity & cost by a few orders of magnitude,” Musk wrote at the time.
Musk later reinforced that idea by responding positively to an X post stating that Tesla’s AI6 chip would effectively be the new Dojo. Considering his recent updates on X, however, it appears that Tesla will be using AI7, not AI6, as its dedicated Dojo successor. The CEO did state that Tesla’s AI7, AI8, and AI9 chips will be developed in short, nine-month cycles, so Dojo’s deployment might actually be sooner than expected.
Elon Musk
Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online
Elon Musk shared his update in a recent post on social media platform X.
xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.
Elon Musk shared his update in a recent post on social media platform X.
Colossus 2 goes live
The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world.
But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.
Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.
Funding fuels rapid expansion
xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.
The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.
xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.