News
SpaceX shuffles Starships, gears up for more Super Heavy static fires
SpaceX is busy preparing for the orbital launch debut its next-generation Starship rocket, but the company’s South Texas rocket factory is also working around the clock to prepare several more sets of ships and boosters for the flight testing that will follow.
That was more obvious than usual on November 8th, when SpaceX made moves to prepare both of its finished Starships for new phases of testing. SpaceX kicked off the busy day by removing Starship S25 – a newer prototype that arrived at the launch site just three weeks prior – a stand dedicated to proof testing ships. Three hours later, after spending three of the last four weeks sitting on top of Super Heavy Booster 7, Starship S24 was ‘destacked’ (lifted off of B7 and lowered onto a stand on the ground) in the early afternoon.
Booster 7, Ship 24, and Ship 25 have all been busy since mid-October. SpaceX stacked Booster 7 and Ship 24 for the first time on October 11th and then attempted to test the fully-stacked rocket on October 13th. By some accounts, although almost nothing was visible to the public, the first full-stack test may have gone poorly, potentially even endangering pad technicians that approached the rocket to troubleshoot. On October 16th, SpaceX fully destacked Ship 24, and CEO Elon Musk noted that the company was “proceeding very carefully” to avoid an explosion that could set “Starship progress back by ~6 months.”
But if there was a major issue on October 13th, SpaceX didn’t show it, and Ship 24 was reinstalled atop Booster 7 on October 20th without any obvious maintenance or repairs. SpaceX then kicked off an unusual series of tests on October 24th, during which it only filled the liquid oxygen (LOx) or liquid methane (LCH4) tanks of Super Heavy B7, Ship 24, or both vehicles at once. A rare NASA briefing on October 31st later called them “single-species prop[ellant]” tests – a kind of extra-cautious testing that had never been seen before at Starbase. A few days prior, a member of NASA’s Aerospace Safety Advisory Panel (ASAP) noted that an accidental explosion that damaged Booster 7 in July had caused SpaceX to “increase [the rigor of its] systems engineering and risk management,” explaining the sudden influx of unusually conservative testing.
By the time Ship 24 was destacked from Booster 7 on November 8th, SpaceX had completed seven single-species tests, four of which involved loading LOx or LCH4 into both stages and three of which only tested Super Heavy. Booster 7 and Ship 24’s tanks were fully filled and LCH4 and LOx were never simultaneously loaded on either stage.
NASA’s October 31st briefing reported that SpaceX had plans to destack Ship 24 before conducting additional static fire testing with Booster 7. While B7 completed 1, 3, and 7-engine static fires in August and September, those tests were nowhere close to the full 33-engine static fire required to properly qualify the most powerful rocket in history. According to NASASpaceflight.com managing editor Chris Bergin, SpaceX’s next goal is to fire up approximately half of Super Heavy B7’s Raptors.
Strangely, although Ship 24 was believed to have completed all of the standalone testing needed to clear it for flight, SpaceX installed the vehicle on a stand used for Starship static fire testing on November 9th, implying that more standalone testing may be required. For now, that shouldn’t pose a problem as long as SpaceX wraps up any additional Starship testing around the same time as Booster 7’s next static fire campaign wraps up, but it could delay full-stack launch readiness if it takes any longer.
Finally, after Ship 25 was removed from SpaceX’s other Starship test stand on November 8th, it was rolled back to Starbase’s Starship factory. Ship 25 first rolled to the launch site on October 19th and has since completed four visible tests. On October 28th, Ship 25 survived a pneumatic proof test that showed that its tanks were leak-free and capable of surviving flight pressures (roughly 6-8.5 bar or 90-125 psi). Three cryogenic proof tests followed on November 1st, 2nd, and 7th. The first cryoproof was likely just that – a test that pressurized Ship 25’s tanks and filled them with cryogenic liquid nitrogen (LN2) or a combination of liquid oxygen and LN2.
The next two tests likely took advantage of the customized test stand, which has been semi-permanently outfitted with a set of hydraulic rams that allow SpaceX to simulate the thrust of six Raptor engines while Starship’s structures are chilled to cryogenic temperatures and loaded with roughly 1000 tons (~2.2M lb) of cryogenic fluids. If a Starship can survive those stresses on the ground, the assumption is that it will likely survive similar stresses in flight.
Assuming that Ship 25’s first several proof tests were successful, which they appear to have been, SpaceX returned the prototype to its Starbase factory to install six Raptor engines and a series of shields and firewalls that will protect those engines from each other. Once fully outfitted, Ship 25 will return to the launch site for static fire testing and take Ship 24’s place on Suborbital Pad B. Ship 24 took approximately two months to go from its last cryoproof to its first static fire. But its testing got off to a relatively rocky start, so Ship 25 could be ready sooner.
SpaceX could begin the next phases of Booster 7 and Ship 24 testing as early as November 10th or November 13th.
Cybertruck
Tesla updates Cybertruck owners about key Powershare feature
Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.
Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.
Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.
However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.
Powerwall discharge would be prioritized before tapping into the truck’s larger pack.
However, Tesla is still working on getting the feature out to owners, an email said:
“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026.
This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”
Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.
Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.
Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:
As a Cybertruck owner who also has Powerwall, I empathize with the disappointed comments.
To their credit, the team has delivered powershare functionality to Cybertruck customers who otherwise have no backup with development of the powershare gateway. As well as those with solar…
— Wes (@wmorrill3) December 12, 2025
He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”
It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.
News
Tesla’s northernmost Supercharger in North America opens
Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.
Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.
There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.
Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:
North America’s northernmost Supercharger Fairbanks, AK (8 stalls) opened to public. https://t.co/M4l04DZ6B5 pic.twitter.com/zyL6bDuA93
— Tesla Charging (@TeslaCharging) December 12, 2025
The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.
Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.
Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.
🚨🚨 Tesla Supercharging had a HUGE year, and they deserve to be recognized.
🍔 Opened Tesla Diner, a drive-in movie theater with awesome, Chef-curated cuisine
🔌 Gave access to Superchargers to several EV makers, including Hyundai, Genesis, Mercedes-Benz, Kia, Lucid, Toyota,… pic.twitter.com/yYT2QEbqoW
— TESLARATI (@Teslarati) December 10, 2025
Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.
Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.
Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.
News
Tesla shocks with latest Robotaxi testing move
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.
Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.
However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:
🚨 Tesla is using Model S vehicles fitted with LiDAR rigs to validate FSD and Robotaxi, differing from the Model Ys that it uses typically
Those Model Y vehicles have been on the East Coast for some time. These Model S cars were spotted in California https://t.co/CN9Bw5Wma8 pic.twitter.com/UE55hx5mdd
— TESLARATI (@Teslarati) December 11, 2025
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.
Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.
Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”
However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.
Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.