News
SpaceX ‘sleeves’ Starship-derived propellant tank for the first time – here’s why
In a small but important step towards activating a pad capable of launching the largest and most powerful rocket ever built, SpaceX has ‘sleeved’ one of its Starship-derived propellant storage tanks for the first time.
Starship is a fully-reusable, two-stage liquid rocket designed to ultimately cut the cost of orbital launch by at least one magnitude, opening the door for humanity’s sustainable expansion to Earth orbit, the Moon, Mars, and even beyond. To accomplish that lofty feat, it has to be a massive rocket. Measuring approximately 120m (~395 ft) tall and 9m (~30 ft) wide, Starship and Super Heavy will weigh on the order of 300 metric tons (~675,000 lb) when empty.
Once filled to the brim with cryogenic liquid methane (CH4) and liquid oxygen (LOx) propellant and gas, though, a two-stage Starship will easily weigh more than 5000 tons (11 million lb) shortly before and after liftoff. Further, SpaceX wants to be able to launch at least two Starships from Boca Chica in rapid succession. To meet the staggering needs of back-to-back Starship launches, SpaceX has thus had to design and build what will be the world’s largest launch pad tank farm.
Work on that tank farm is already well underway, though progress has been slower than expected. The site’s foundation and a few associated blockhouses were mostly completed by January 2021. By early April, the company had completed the first of at least seven steel propellant storage tanks at its Starship factory and rolled it to the launch pad for installation.
Notably, SpaceX chose to manufacture those storage tanks itself and ended up building structures virtually identical to the tanks that already make up most of flightworthy Starship and Super Heavy airframes. Depending on whether they’re meant to store liquid oxygen or methane, the seven tanks SpaceX is building are either 26 or 30 meters (85 or 100 feet) tall – though the concrete mounts they’re affixed to at the launch site are sized such that all storage tanks will have the same final height.
Of course, being made with the same tools and out of the same steel as Starship and Super Heavy, that means that SpaceX’s custom storage tanks are little more than 4mm (~1/6″) thick steel shells – about as bad as it gets for keeping cryogenic rocket fuel… cryogenic. If SpaceX were to simply use those unmodified tanks, it would be almost impossible to store Starship fuel for more than a few hours – and maybe just a few minutes – without it warming up past the point of usability.
As such, SpaceX’s final Starship tank farm design involves seven Starship-derived storage tanks and seven contractor-built tank sleeves. Measuring around 12m (~40 ft) wide and 40m (~130 ft) tall, those “cryo shells” will enclose all seven SpaceX-built tanks, allowing the company to fill the 1.5m (~5 ft) gap between them with an insulating solid, gas, or some combination of both. With those shells and insulation, SpaceX’s custom-built Starship tank form should be more than capable of storing cryogenic liquid oxygen and methane for days or even weeks.
As of August 5th, SpaceX has installed three of Starship’s custom ground supply equipment (GSE) tanks (with a fourth moved onsite on Thursday), moved two ‘cryo shells’ to temporary storage spots at the pad, and installed one cryo shell that actually turned out to be a million-gallon water tank. On Thursday, SpaceX ‘sleeved’ one of those storage tanks for the first time ever, marking an important milestone towards the activation of a tank farm capable of supporting Starship’s orbital launch debut. Another four sleeves are more or less complete, with the eighth and final sleeve likely just a week or two away from completion.
A fifth GSE tank is also more or less complete, leaving two more to go. However, with some basic math, it’s possible to determine that SpaceX’s orbital launch pad likely only needs five cryogenic tanks (three oxygen, two methane) – and possibly as few as four – to support Starship’s first orbital test flight(s). With SpaceX finally beginning to install tank sleeves, it’s possible that that four or five-tank milestone – and the first tests of SpaceX’s custom, unproven storage solution – are now much closer at hand.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
