News
SpaceX ‘sleeves’ Starship-derived propellant tank for the first time – here’s why
In a small but important step towards activating a pad capable of launching the largest and most powerful rocket ever built, SpaceX has ‘sleeved’ one of its Starship-derived propellant storage tanks for the first time.
Starship is a fully-reusable, two-stage liquid rocket designed to ultimately cut the cost of orbital launch by at least one magnitude, opening the door for humanity’s sustainable expansion to Earth orbit, the Moon, Mars, and even beyond. To accomplish that lofty feat, it has to be a massive rocket. Measuring approximately 120m (~395 ft) tall and 9m (~30 ft) wide, Starship and Super Heavy will weigh on the order of 300 metric tons (~675,000 lb) when empty.
Once filled to the brim with cryogenic liquid methane (CH4) and liquid oxygen (LOx) propellant and gas, though, a two-stage Starship will easily weigh more than 5000 tons (11 million lb) shortly before and after liftoff. Further, SpaceX wants to be able to launch at least two Starships from Boca Chica in rapid succession. To meet the staggering needs of back-to-back Starship launches, SpaceX has thus had to design and build what will be the world’s largest launch pad tank farm.
Work on that tank farm is already well underway, though progress has been slower than expected. The site’s foundation and a few associated blockhouses were mostly completed by January 2021. By early April, the company had completed the first of at least seven steel propellant storage tanks at its Starship factory and rolled it to the launch pad for installation.
Notably, SpaceX chose to manufacture those storage tanks itself and ended up building structures virtually identical to the tanks that already make up most of flightworthy Starship and Super Heavy airframes. Depending on whether they’re meant to store liquid oxygen or methane, the seven tanks SpaceX is building are either 26 or 30 meters (85 or 100 feet) tall – though the concrete mounts they’re affixed to at the launch site are sized such that all storage tanks will have the same final height.
Of course, being made with the same tools and out of the same steel as Starship and Super Heavy, that means that SpaceX’s custom storage tanks are little more than 4mm (~1/6″) thick steel shells – about as bad as it gets for keeping cryogenic rocket fuel… cryogenic. If SpaceX were to simply use those unmodified tanks, it would be almost impossible to store Starship fuel for more than a few hours – and maybe just a few minutes – without it warming up past the point of usability.
As such, SpaceX’s final Starship tank farm design involves seven Starship-derived storage tanks and seven contractor-built tank sleeves. Measuring around 12m (~40 ft) wide and 40m (~130 ft) tall, those “cryo shells” will enclose all seven SpaceX-built tanks, allowing the company to fill the 1.5m (~5 ft) gap between them with an insulating solid, gas, or some combination of both. With those shells and insulation, SpaceX’s custom-built Starship tank form should be more than capable of storing cryogenic liquid oxygen and methane for days or even weeks.
As of August 5th, SpaceX has installed three of Starship’s custom ground supply equipment (GSE) tanks (with a fourth moved onsite on Thursday), moved two ‘cryo shells’ to temporary storage spots at the pad, and installed one cryo shell that actually turned out to be a million-gallon water tank. On Thursday, SpaceX ‘sleeved’ one of those storage tanks for the first time ever, marking an important milestone towards the activation of a tank farm capable of supporting Starship’s orbital launch debut. Another four sleeves are more or less complete, with the eighth and final sleeve likely just a week or two away from completion.
A fifth GSE tank is also more or less complete, leaving two more to go. However, with some basic math, it’s possible to determine that SpaceX’s orbital launch pad likely only needs five cryogenic tanks (three oxygen, two methane) – and possibly as few as four – to support Starship’s first orbital test flight(s). With SpaceX finally beginning to install tank sleeves, it’s possible that that four or five-tank milestone – and the first tests of SpaceX’s custom, unproven storage solution – are now much closer at hand.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.