News
SpaceX preparing Super Heavy, Starbase for booster’s next steps
Amid a flurry of deliveries and work on several new Starship boosters, SpaceX is preparing the first truly finished Super Heavy for its next steps.
Partially completed by early September, Super Heavy Booster 4 (B4) supported SpaceX’s iconic ‘full stack’ fit test back on August 6th before returning to the build site but has mostly just floated around Starbase’s launch and test facilities in the seven weeks since its second trip to the pad. On September 10th, CEO Elon Musk himself suggested that SpaceX had plans to static fire the booster as early as mid-September – more than six weeks ago. Obviously, nothing even approximating Super Heavy testing transpired. Instead, at least relative to rapid-fire Starbase operations in the two years prior, SpaceX has almost absentmindedly worked on the booster, mostly completing partially-finished wire runs that run its full 69m (~225 ft) length.
In the last few weeks, though, the type of work being done on Super Heavy B4 has changed.



On September 26th, to give the Starbase construction crew more room to install giant arms on the orbital pad’s ‘launch tower,’ SpaceX removed Super Heavy B4 from the launch mount for the second time, temporarily relocating it to an unused patch of the pad’s old landing zone. Booster 4 hasn’t been moved since. However, while probably a bit slower than SpaceX would have liked, large-scale work on the Starship launch tower was effectively completed last week with the installation of two giant rocket-catching ‘Mechazilla’ arms.
A great deal of work has also been done on Starbase’s orbital tank farm over the last two months, including the installation of the last few storage tanks, the ‘sleeving’ of those tanks, a great deal of plumbing, and the start of real propellant deliveries. Save for a few days spent testing Starship S20 in late September and mid-October, the pad construction crews that have to evacuate the pad for 6-12 hours for every test have had three full months to work without interruption. Perhaps the most optimistic explanation for the unusually long gap between Booster 4 and Ship 20 rollout and testing is that SpaceX consciously chose to put off vehicle tests to avoid disrupting orbital launch site construction and retasked nearly all Starbase workers for that construction.
Regardless, with the launch tower and orbital tank farm now more or less structurally complete and work already underway to prepare the tank farm to support its first booster tests, most of the work that may have been drawing focus and resources away from ship and booster preparations appears to be wrapping up. That may be why, for the third time, SpaceX technicians began removing a number of Raptor engines from Super Heavy B4 around the start of October.
Aside from removing around a third to half of Super Heavy’s 29 Raptors, SpaceX also began slowly but surely installing parts of a steel heatshield designed to protect those engines during ground testing, ascent, and reentry. Newer Raptors have also been trickling from Starbase’s build site to the launch pad for installation on the booster and more engines will likely be (re)installed as heatshield installation progresses.

Perhaps the most unusual part of recent Super Heavy B4 work is the apparent application of some kind of foam around several racks of pressure vessels (COPVs), hydraulic manifolds, and umbilical connections installed around the booster’s base. Those racks will eventually be enclosed inside steel ‘aerocovers’ already staged beside Super Heavy. A number of Twitter users believe that the foam being selectively applied is for acoustic deadening – meant to protect sensitive electronics, valves, and computers from the brutal environment Super Heavy itself will produce at liftoff and during ground testing.
Ultimately, with Booster 4 work ramping back up and the zenith of orbital pad construction activity now likely behind SpaceX, preparations for major Super Heavy testing will hopefully resume. SpaceX has yet to perform a full Super Heavy wet dress rehearsal (WDR; fully filling a rocket’s tanks and performing a launch countdown) or fire up more than three Raptors on a booster or ship prototype. With any luck, that will finally change in the final months of 2021.
News
Tesla Robotaxi’s biggest rival sends latest statement with big expansion
The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.
Tesla Robotaxi’s biggest rival sent its latest statement earlier this month by making a big expansion to its geofence, pushing the limits up by over 50 percent and nearing Tesla’s size.
Waymo announced earlier this month that it was expanding its geofence in Austin by slightly over 50 percent, now servicing an area of 140 square miles, over the previous 90 square miles that it has been operating in since July 2025.
Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’
The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.
These rides are fully driverless, which sets them apart from Tesla slightly. Tesla operates its Robotaxi program in Austin with a Safety Monitor in the passenger’s seat on local roads and in the driver’s seat for highway routes.
It has also tested fully driverless Robotaxi services internally in recent weeks, hoping to remove Safety Monitors in the near future, after hoping to do so by the end of 2025.
Tesla Robotaxi service area vs. Waymo’s new expansion in Austin, TX. pic.twitter.com/7cnaeiduKY
— Nic Cruz Patane (@niccruzpatane) January 13, 2026
Although Waymo’s geofence has expanded considerably, it still falls short of Tesla’s by roughly 31 square miles, as the company’s expansion back in late 2025 put it up to roughly 171 square miles.
There are several differences between the two operations apart from the size of the geofence and the fact that Waymo is able to operate autonomously.
Waymo emphasizes mature, fully autonomous operations in a denser but smaller area, while Tesla focuses on more extensive coverage and fleet scaling potential, especially with the potential release of Cybercab and a recently reached milestone of 200 Robotaxis in its fleet across Austin and the Bay Area.
However, the two companies are striving to achieve the same goal, which is expanding the availability of driverless ride-sharing options across the United States, starting with large cities like Austin and the San Francisco Bay Area. Waymo also operates in other cities, like Las Vegas, Los Angeles, Orlando, Phoenix, and Atlanta, among others.
Tesla is working to expand to more cities as well, and is hoping to launch in Miami, Houston, Phoenix, Las Vegas, and Dallas.
Elon Musk
Tesla automotive will be forgotten, but not in a bad way: investor
It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.
Entrepreneur and Angel investor Jason Calacanis believes that Tesla will one day be only a shade of how it is recognized now, as its automotive side will essentially be forgotten, but not in a bad way.
It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.
I subscribed to Tesla Full Self-Driving after four free months: here’s why
Eventually, and even now, the focus has been on real-world AI and Robotics, both through the Full Self-Driving and autonomy projects that Tesla has been working on, as well as the Optimus program, which is what Calacanis believes will be the big disruptor of the company’s automotive division.
On the All-In podcast, Calcanis revealed he had visited Tesla’s Optimus lab earlier this month, where he was able to review the Optimus Gen 3 prototype and watch teams of engineers chip away at developing what CEO Elon Musk has said will be the big product that will drive the company even further into the next few decades.
Calacanis said:
“Nobody will remember that Tesla ever made a car. They will only remember the Optimus.”
He added that Musk “is going to make a billion of those.”
Musk has stated this point himself, too. He at one point said that he predicted that “Optimus will be the biggest product of all-time by far. Nothing will even be close. I think it’ll be 10 times bigger than the next biggest product ever made.”
He has also indicated that he believes 80 percent of Tesla’s value will be Optimus.
Optimus aims to totally revolutionize the way people live, and Musk has said that working will be optional due to its presence. Tesla’s hopes for Optimus truly show a crystal clear image of the future and what could be possible with humanoid robots and AI.
News
Tesla Robotaxi fleet reaches new milestone that should expel common complaint
There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.
Tesla Robotaxi is active in both the Bay Area of California and Austin, Texas, and the fleet has reached a new milestone that should expel a common complaint: lack of availability.
It has now been confirmed by Robotaxi Tracker that the fleet of Tesla’s ride-sharing vehicles has reached 200, with 158 of those being available in the Bay Area and 42 more in Austin. Despite the program first launching in Texas, the company has more vehicles available in California.
The California area of operation is much larger than it is in Texas, and the vehicle fleet is larger because Tesla operates it differently; Safety Monitors sit in the driver’s seat in California while FSD navigates. In Texas, Safety Monitors sit in the passenger’s seat, but will switch seats when routing takes them on the highway.
Tesla has also started testing rides without any Safety Monitors internally.
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
This new milestone confronts a common complaint of Robotaxi riders in Austin and the Bay, which is vehicle availability.
There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.
I attempted to take a @robotaxi ride today from multiple different locations and time of day (from 9:00 AM to about 3:00 PM in Austin but never could do so.
I always got a “High Service Demand” message … I really hope @Tesla is about to go unsupervised and greatly plus up the… pic.twitter.com/IOUQlaqPU2
— Joe Tegtmeyer 🚀 🤠🛸😎 (@JoeTegtmeyer) November 26, 2025
With that being said, there have been some who have said wait times have improved significantly, especially in the Bay, where the fleet is much larger.
Robotaxi wait times here in Silicon Valley used to be around 15 minutes for me.
Over the past few days, they’ve been consistently under five minutes, and with scaling through the end of this year, they should drop to under two minutes. pic.twitter.com/Kbskt6lUiR
— Alternate Jones (@AlternateJones) January 6, 2026
Tesla’s approach to the Robotaxi fleet has been to prioritize safety while also gathering its footing as a ride-hailing platform.
Of course, there have been and still will be growing pains, but overall, things have gone smoothly, as there have been no major incidents that would derail the company’s ability to continue developing an effective mode of transportation for people in various cities in the U.S.
Tesla plans to expand Robotaxi to more cities this year, including Miami, Las Vegas, and Houston, among several others.