News
SpaceX Starlink, Starship programs crush funding goals, raise $2 billion
On the heels of a successful ~$350 million fundraising round, SpaceX has crushed its own expectations of a second, far more ambitious fundraiser, likely ensuring stable Starship and Starlink development for years to come.
First reported by Bloomberg on July 23rd, SpaceX’s second investment round of 2020 initially pursued $1 billion in funding, boosting the company’s valuation to $44 billion. Less than four weeks later, an August 18th SEC filing revealed that SpaceX had more than doubled its offering after it received overwhelming interest from prospective investors.
According to the regulatory document, SpaceX has now secured an incredibly $1.9 billion of a $2.06 billion of new funding for its Starlink and Starship programs, likely guaranteeing the health of both expensive development programs for 12-18+ months. Alternatively, the company could feasibly speed up either or both programs by a substantial amount with such a massive capital injection, shrinking the time required for Starship to reach orbit and begin operational launches and for Starlink to begin serving customers and generating revenue.

Prior to August 2020, SpaceX had raised a total of ~$3.4 billion over ~12 years of major funding rounds. In 2015, Google and Fidelity invested $1 billion in SpaceX – a round that remained the company’s biggest until now. Once again primarily driven by Fidelity, if SpaceX successfully closes the $2 billion series it kicked off last month, the company’s funding to date will jump nearly 60% in a single round.
Very few companies in history can claim to have closed an oversubscribed $2 billion funding round, making it easy to say that SpaceX is currently one of the hottest private investment opportunities in the world. There are several likely reasons that help explain why.



The track record of companies run by Elon Musk likely plays a huge role in investor confidence. Against all odds and in the face of hordes of detractors and naysayers, Tesla has shaped itself into the world’s premier electric vehicle (EV) manufacturer and managed to do so while still becoming a profitable (or at least sustainable) company. As a result, the value of $TSLA has exploded in 2019 and 2020, turning it into one of the most lucrative investments in years.
SpaceX has proven itself to be just as disruptive – if not more so – in the aerospace industry, designing, building, and fielding industry-leading rockets and spacecraft that are years ahead of “competition” and doing so with cost efficiency that competitors and national space agencies did not believe was possible. As a result, SpaceX now owns a vast majority of the global commercial launch market, is the only entity on Earth operating orbital-class reusable rockets, and is the only company capable of both building and launching its own satellite constellations.
From an investment perspective, the commercial launch market likely makes most eyes glaze over. Starlink, however, has the potential to tap into a large portion of a global communications market worth hundreds of billions to more than a trillion dollars. Building a satellite constellation large and capable enough to do so is an extraordinarily expensive ordeal no matter how efficient SpaceX is, but once it’s even partially complete, it could almost effortlessly magnify the company’s annual revenue by 5-10x.

Once Starlink is able to serve millions of customers, it could easily become self-sustaining. With tens of millions of customers, it could become a veritable cash cow, generating >$6 billion in annual revenue on annual upkeep and operating costs of $1-2 billion at most (conservatively estimating 24 Starlink launches per year for $50 million each).
This doesn’t even account for Starship, which could effectively create whole new markets for space access if SpaceX is able to achieve its ambitious design goals. For Starlink, though, Starship would be equally game-changing by making constellation deployment at least ~7 times more cost-effective than Falcon 9 (~400 vs. ~60 satellites per launch).
Regardless, with at least $1.9 billion soon to be in the bank, it should be clear that any doubt that SpaceX has the resources it needs to sustain its Starlink and Starship development programs for one or several more years is woefully misplaced.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.
The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.
Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:
I am in a robotaxi without safety monitor pic.twitter.com/fzHu385oIb
— TSLA99T (@Tsla99T) January 22, 2026
Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.
Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:
Robotaxi rides without any safety monitors are now publicly available in Austin.
Starting with a few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors, and the ratio will increase over time. https://t.co/ShMpZjefwB
— Ashok Elluswamy (@aelluswamy) January 22, 2026
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.
In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.
While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.
Investor's Corner
Tesla Earnings Call: Top 5 questions investors are asking
Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.
The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.
Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.
There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:
- You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
- Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
- When is FSD going to be 100% unsupervised?
- Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
- What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
- Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
- Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
- Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
- Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
- Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.
Tesla will have its Earnings Call on Wednesday, January 28.
Elon Musk
Elon Musk shares incredible detail about Tesla Cybercab efficiency
Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.
ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.
The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.
Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.
Probably true
— Elon Musk (@elonmusk) January 22, 2026
ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest
This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.
The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.
Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.
Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.
It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”