Connect with us

News

SpaceX Starship factory breaks ground on an even bigger ‘high bay’

Published

on

SpaceX appears to have more or less broken ground on a new, even bigger ‘high bay’ assembly facility at its Boca Chica, Texas Starship factory.

Barely one year ago, SpaceX erected the first prefabricated steel sections of what eventually become its Starship factory ‘high bay’ – a spartan 81m (~265 ft) tall designed at the most basic level to shield final Starship and Super Heavy booster assembly from the elements. Situated near the southernmost tip of Texas and just a few miles west of the Gulf of Mexico, those “elements” can be less than pleasant at SpaceX’s primary Starship factory, ranging from sauna-like heat and humidity and mosquitoes the size of quarters to regular downpours, thunderstorms, tropical conditions, and even hurricanes.

While a great deal of work at Starbase is still done out in the open with little more than an umbrella as protection, SpaceX has nevertheless worked to find a middle ground where the most sensitive work (mainly structural welding) can be mostly shielded from wind and rain. First, SpaceX built a (relatively) tiny ‘windbreak’ too small for much of anything. Two years later, the windbreak is partially used for Starship nose section assembly – when a nose cone is stacked on and welded to a separate stack of four steel rings.

A few months after the triangular windbreak was fully finished, SpaceX started work on a larger box-like building that would eventually be known as the Starship factory’s ‘midbay.’ Standing around 45m (~150 ft) tall, the midbay was designed to support the process of assembling Starship tank sections from several stacks of 2-4 steel rings but was – for whatever reason – left too short to support the full Starship assembly process.

Instead, once Starship tank sections were finished, they would have to be rolled out of the midbay for nose installation. Eventually, in July 2020, SpaceX began assembling an even larger ‘high bay’ that would ultimately measure 81m (~265 ft) tall and 20-25m (65-80 ft) wide and deep – easily big enough to fit the company’s existing Falcon 9 or Falcon Heavy rockets with room to spare. More importantly, of course, the high bay was built to be large enough to support Super Heavy assembly from start to finish, giving SpaceX teams a sheltered place to build the largest rocket boosters in history.

Advertisement
-->

As of August 2021, SpaceX’s midbay has supported the assembly of 10 Starship prototypes, 5-6 propellant storage tanks, and several ‘test tanks,’ while the newer high bay has helped SpaceX build three (mostly) complete Super Heavy boosters in 2021. However, working at full speed, SpaceX’s midbay is really only capable of supporting the assembly of one Starship tank section (and more general work on two) at a time and the high bay – while offering at least twice the covered surface area – appears to be limited to simultaneous work on two or three different stacks (boosters, ships, tanks, etc.).

As SpaceX slowly but surely treks towards the end of approximately two years almost exclusively dedicated to building ever-changing prototypes, it’s been clear for a while that the company would need to drastically expand its production facilities to produce the dozens of Starships and boosters CEO Elon Musk has been publicly dreaming of. Even at lower volumes, those existing facilities – while great for producing a dozen or more prototypes per year – would still become a chokepoint for the near-term production of a small fleet of operational Starships and Super Heavies.

In turn, Musk revealed that SpaceX was about to start building “a much larger high bay” adjacent to the existing structure in late July. On August 20th, a little over a year after assembly of the original high bay kicked off, SpaceX began the process of tearing up existing concrete for the even larger bay – breaking ground, at least in a sense. According to Musk, the newest addition to Starbase’s Starship factory will be about 10% taller (~90m vs 81m), substantially wider, and likely a bit deeper than the existing high bay, allowing for the installation of two side-by-side bridge cranes with tracks running the full width of the building.

With at least 2-3 times more surface area than the high bay, the new wide bay should give SpaceX enough space to simultaneously assemble something like 4-8 Starships or Super Heavy boosters. Depending on which direction SpaceX goes, the wide bay could also potentially be large enough for SpaceX to create the first true Starship and Super Heavy assembly lines, though that would be a substantial departure from Starbase’s existing approach to manufacturing.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

Published

on

Credit: @BLKMDL3/X

Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD). 

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

10 billion miles of training data

Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly. 

“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote. 

Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles. 

Advertisement
-->

FSD’s total training miles

As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program. 

The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”

Continue Reading

News

Tesla earns top honors at MotorTrend’s SDV Innovator Awards

MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Published

on

Credit: Tesla China

Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.

As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Tesla leaders and engineers recognized

The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.

Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.

Tesla’s software-first strategy

While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.

Advertisement
-->

This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.

Continue Reading

Elon Musk

Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial. 

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.

Judge says disputed facts warrant a trial

At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.

Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”

OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.

Advertisement
-->

Rivalries and Microsoft ties

The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.

The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.

Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.

Continue Reading