News
SpaceX sends Starship prototype to launch pad after engine installation
After several weeks of work back at SpaceX’s Starbase rocket factory, the company has transported a new and improved Starship prototype to nearby test and launch facilities, where it joined a similarly upgraded Super Heavy booster.
That Starship prototype – Ship 24 or S24 – is closely following in the footsteps of Super Heavy Booster 7 (B7), which kicked off a similar phase of preflight testing about two weeks ago. The purposes of their latest trips from the factory to the launch pad are also largely the same and could potentially open the door for Starship’s inaugural orbital launch attempt sometime later this year if the process goes smoothly. Both protypes have a ways to go, however.
Booster 7 and Ship 24 got off to fairly rocky starts when they began a less risky phase of proof testing in May and June. Apparently caused by improper sequencing or a small design flaw, a large steel tube meant to carry liquid methane fuel through Booster 7’s liquid oxygen tank and double as a storage vessel for landing propellant violently imploded when a vacuum formed inside it. It took SpaceX several weeks to repair the damage but, defying the odds, the tube was eventually repaired and Booster 7 completed another two proof tests soon after.
A few weeks later, during one of Ship 24’s first tests, a much smaller internal pipe – likely carrying high-pressure gas – also failed, damaging heat shield tiles and other adjacent plumbing. S24’s troubles were less dramatic and only took a few days to fix, but both were still new failure modes for the Starship program and served as a reminder that Starship hardware remains relatively immature and that SpaceX is still learning. Nonetheless, they also demonstrated SpaceX’s ability to respond quickly to new problems, as both B7 and S24 sailed through additional testing without apparent issue after quick repairs.


After completing cryogenic proof and thrust simulation testing, B7 and S24 returned to SpaceX’s factory facilities for Raptor installation and finishing touches. SpaceX took about six weeks to install 33 Raptor engines and associated heat shielding on Booster 7, while installing six Raptors and wrapping up a few other aspects of Ship 24 took about four weeks.

Aside from the installation of most of the Starship’s missing heat shield tiles, Ship 24’s preparations did include one particularly unique step involving its payload bay prototype. SpaceX’s first stab at a Starship payload bay has been likened to a giant Pez dispenser, which is not entirely inaccurate. Exclusive to Starlink, satellites will be stored on a rectangular rack that’s assumed to operate like an elevator. As an unknown mechanism pushes two satellites at a time through Starship’s slot-like bay door, the stack of satellites will feed downwards like bullets in a magazine until the full set is fully deployed.

In late June, SpaceX attached a giant white box to a crane and positioned the box to interface with Ship 24’s bay door, where it hung for the better part of a day. The test confirmed speculation that the box was meant to solve perhaps the most obvious problem SpaceX’s unique payload bay design posed: payload installation. SpaceX’s solution appears to involve using the deployment mechanism in reverse, with the white box conveying Starlink Gen2 satellites through the ‘slot’ and the dispenser grabbing and lifting each pair up into the bay.
It’s possible that Ship 24 will have a handful of Starlink V2/Gen2 satellites loaded into its bay if it passes its next tests. Before being cleared for flight, Ship 24 will need to complete at least one nominal wet dress rehearsal (simulating every aspect of a launch short of engine ignition) and one six-engine static fire, though several tests are far more likely. Starship S24’s test campaign will benefit significantly from Starship S20, which survived extensive testing (and multiple six-Raptor static fires) in 2021. In comparison, Super Heavy B7’s similar wet dress rehearsal and static fire test campaign will be almost entirely new to SpaceX, save for a single three-engine static fire completed by an outdated booster prototype last year.
SpaceX could attempt to static fire Booster 7 for the first time as early as Wednesday, July 6th. It’s unclear if the company will attempt to kick off Ship 24’s next round of testing in the gaps between Super Heavy B7’s static fire testing. While unlikely, SpaceX is technically capable of testing Ship 24 and Booster 7 simultaneously.
News
Tesla wins FCC approval for wireless Cybercab charging system
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.
Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system.
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.
Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”
The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”
Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”
Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”
As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.
While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.
Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.
Elon Musk
Tesla posts updated FSD safety stats as owners surpass 8 billion miles
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles.
Tesla shared the milestone in a post on its official X account.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.
Elon Musk
The Boring Company’s Music City Loop gains unanimous approval
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.
The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown.
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.
Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.
The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post.
Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.
“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said.
The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.
Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”