News
SpaceX preps Starship, Super Heavy for another week of Raptor testing
SpaceX continues to work around the clock to prepare its latest Starship and Super Heavy booster prototypes for another week of testing – likely focused on firing up the Raptor engines installed on each vehicle.
Known as Booster 7 and Ship 24, SpaceX has been slowly testing both prototypes for approximately four months, beginning in April and May, respectively. Only in early August did the company cautiously begin attempting to ignite their Raptor engines as part of a process known as static fire testing – by far the most difficult and important part of qualifying both vehicles for flight.
Thanks to progress made in 2021, SpaceX already has significant experience testing an earlier orbital-class Starship prototype on the ground, but the process of testing Ship 24 is still fresh and unfamiliar for a number of reasons. For Booster 7, the challenges are even greater.
On top of major design changes made to Starship and Super Heavy over the last year as SpaceX continues to refine the rocket, the company also developed a substantially different version of its Raptor engine. Compared to Raptor V1, Raptor V2 almost looks like a new engine and can produce around 25% more thrust (230 tons versus 185 tons). SpaceX has also tweaked how the engine operates, particularly around startup and shutdown, further weakening the value of past experience testing Raptor V1 and V1.5 engines on Ship 20 and Boosters 3 and 4.
In other words, with Ship 24 and Booster 7 engine testing, it’s possible that SpaceX is effectively starting from scratch. Many aspects of testing – propellant conditioning, thermal characteristics, tanking, detanking, certain test stands – are likely mostly unchanged, but almost every aspect of a rocket is affected by its engines.


Before SpaceX began testing Raptor V2 engines on Starship and booster prototypes, it wasn’t clear if the changes between V1.5 and V2 would invalidate a lot of prior testing. After the start of Booster 7 and Ship 24 static fire testing, it’s now clear that a lot of that earlier work has to be redone. It’s also clear that despite some of the simplifications in Raptor V2’s design, operating the engine on Starship and Super Heavy is much harder get get right.
Since mid-July, SpaceX has completed around 15-20 ‘spin-prime’ tests between Ship 24 and Booster 7 – more of that kind of test than any other prototype in the history of Starbase has performed. Spin-prime tests flow high-pressure gas through Raptor’s pumps to spin them up without igniting anything. It’s unclear why so many of those tests are being done, what SpaceX is gaining from it, or why the company appears to have completely stopped conducting preburner tests (a more life-like spin-prime with partial combustion).
Regardless, eight weeks after the start of engine testing, Booster 7 has only performed three static fires (two with one engine, one with a max of three or four engines), and Ship 24 has only completed one static fire with two engines. Before either vehicle can be considered ready for flight, a day that could easily never come, each will likely need to conduct multiple successful static fires with all of their Raptor engines (6 on S24 and 33 on B7).
If the pace of Booster 7 testing doesn’t change, the vehicle could be months away from a full 33-engine static fire attempt – perhaps the single most important and uncertain test standing between SpaceX and Starship’s first orbital launch attempt. Ship 24’s path to flight readiness should be simpler, but it appears to be struggling almost as much.
According to CEO Elon Musk, “an intense effort is underway” to ensure that Super Heavy B7’s Raptor engines are well contained during anomalies, so that one engine violently failing won’t damage or destroy the booster, other engines, or the launch pad. That could certainly complicate the process of testing Booster 7, and it’s likely that SpaceX is taking some of the same actions to protect Ship 24.
In early September, after a partially successful Booster 7 static fire (its first multi-engine test) and numerous additional Ship 24 tests that failed to achieve ignition, SpaceX replaced engines on both vehicles. Booster 7 had one of 13 Raptor Center engines swapped out, while Ship 24 had one of its three Raptor Vacuum engines replaced.
On September 5th, SpaceX distributed a safety alert to Boca Chica’s few remaining residents, confirming that it wants to restart testing as early as Tuesday, September 6th. Especially as of late, that alert guarantees nothing, but it does at least open the door for SpaceX if Ship 24, Booster 7, and the positions of the stars happen to be in the right mood between 8am and 8pm CDT. Additional opportunities are available on September 7th, 8th, 9th, and 12th.
Elon Musk
Starlink achieves major milestones in 2025 progress report
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.
SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.
Key achievements from Starlink’s 2025 Progress
Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.
Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.
Starlink Direct to Cell
Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.
“This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.
News
Tesla Giga Nevada celebrates production of 6 millionth drive unit
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
6 million drive units
The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote.
The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.
Giga Nevada’s essential role
Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.
Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.
News
Tesla Supercharger network delivers record 6.7 TWh in 2025
The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.
Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide.
To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.
Record 6.7 TWh delivered in 2025
The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream.
Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.
This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.
Resilience after Supercharger team changes
2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”
Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.
Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible.