Connect with us

News

SpaceX’s thin-skinned Starship ‘test tank’ passes first trial

Elon Musk says that SpaceX's first 3mm-thick Starship test tank passed its first major trial. (LabPadre)

Published

on

CEO Elon Musk says that a new thin-skinned Starship ‘test tank’ just passed its first trial, taking advantage of delays to Starship SN9’s planned high-altitude launch debut.

Delayed by a lack of FAA approval for unknown reasons, Starship SN9’s 12.5-kilometer (7.8 mi) launch debut (virtually identical to SN8’s 12.5 km launch last month) is in limbo pending an “FAA review” according to Musk. SpaceX thus found itself with at least 24 hours of guaranteed inactivity for Starship SN9, time the company rapidly chose to fill with crane transportation and, more importantly, the first Starship ‘test tank’ stress test in months.

Known as Starship SN7.2, SpaceX’s latest ‘test tank’ is the third to carry the SN7 moniker and appears to have been built primarily to test refinements to the rocket’s structural design. Following test tanks SN7.0 and SN7.1, both used to qualify the use of a new steel alloy on an otherwise unchanged design, SN7.2 – likely built out of the same alloy – is instead focused on determining if SpaceX can begin trimming the margins of an increasingly mature technology.

Starship test tank SN7.0 and SN7.1. (NASASpaceflight – bocachicagal)
SN7.2. (NASASpaceflight – bocachicagal)

Curiously, SN7.2 is a sort of fusion of its predecessors: combining the stout stature of SN7.0 with SN7.1’s use of an aft thrust dome, but without SN7.1’s Starship-style skirt (the three rings at its bottom). Welded directly to its black test stand, it’s unclear why SpaceX chose to give SN7.2 a thrust dome, given that the thrust of Raptor engines can only be simulated with hydraulic rams if the tank is installed on one of two Starship launch mounts.

Regardless, whether SpaceX actually tests that aspect of SN7.2, the tank’s most important task is determining if future Starships (and perhaps Super Heavy boosters) can be built out of thinner, lighter steel rings. Its domes appear to be identical to past ships but writing on the exterior of the tank strongly implied that its three rings were built out of 3mm steel rather than the 4mm sheets that have made up every Starship built in the last 12 months.

SpaceX began loading the thin-skinned tank with liquid nitrogen (used to simulate cryogenic propellant without the risk of an explosion) around 9am CST and spent around three hours performing an “initial pressure test.” It’s unclear what that test entailed but it most likely involved raising the tank’s internal pressure to levels achieved by SN7.0 and SN7.1 Musk has previously said that that 6 bar was the bare minimum necessary for orbital flight, translating to 7.5-8.5 bar to achieve an industry-standard safety margin of 25-40%.

Advertisement
-->

That SN7.2 survived that initial pressure test bodes well for the significant mass reductions SpaceX will need to optimize Starships for efficient orbital flight, potentially shaving 5-10 metric tons off the dry mass of future ships. For orbital rocket stages, every single kilogram of mass reduction translates to an extra kilogram of cargo capacity, whereas boost stages (i.e. Super Heavy) offer far more lenient ratios on the order to 10:1, meaning that adding 5-10 kilograms of rocket hardware reduces maximum payload capacity by just ~1 kg.

Depending on when SpaceX is allowed to launch Starship SN9, the company’s next test could involve pressurizing SN7.2 until it bursts, determining if the tank’s thinner skin substantially impacts its performance as a pressure vessel.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla backtracks on strange Nav feature after numerous complaints

Published

on

Credit: Tesla

Tesla is backtracking on a strange adjustment it made to its in-car Navigation feature after numerous complaints from owners convinced the company to make a change.

Tesla’s in-car Navigation is catered to its vehicles, as it routes Supercharging stops and preps your vehicle for charging with preconditioning. It is also very intuitive, and features other things like weather radar and a detailed map outlining points of interest.

However, a recent change to the Navigation by Tesla did not go unnoticed, and owners were really upset about it.

Tesla’s Navigation gets huge improvement with simple update

For trips that required multiple Supercharger stops, Tesla decided to implement a naming change, which did not show the city or state of each charging stop. Instead, it just showed the business where the Supercharger was located, giving many owners an unwelcome surprise.

However, Tesla’s Director of Supercharging, Max de Zegher, admitted the update was a “big mistake on our end,” and made a change that rolled out within 24 hours:

The lack of a name for the city where a Supercharging stop would be made caused some confusion for owners in the short term. Some drivers argued that it was more difficult to make stops at some familiar locations that were special to them. Others were not too keen on not knowing where they were going to be along their trip.

Tesla was quick to scramble to resolve this issue, and it did a great job of rolling it out in an expedited manner, as de Zegher said that most in-car touch screens would notice the fix within one day of the change being rolled out.

Additionally, there will be even more improvements in December, as Tesla plans to show the common name/amenity below the site name as well, which will give people a better idea of what to expect when they arrive at a Supercharger.

Continue Reading

News

Dutch regulator RDW confirms Tesla FSD February 2026 target

The regulator emphasized that safety, not public pressure, will decide whether FSD receives authorization for use in Europe.

Published

on

The Dutch vehicle authority RDW responded to Tesla’s recent updates about its efforts to bring Full Self-Driving (Supervised) in Europe, confirming that February 2026 remains the target month for Tesla to demonstrate regulatory compliance. 

While acknowledging the tentative schedule with Tesla, the regulator emphasized that safety, not public pressure, will decide whether FSD receives authorization for use in Europe.

RDW confirms 2026 target, warns Feb 2026 timeline is not guaranteed

In its response, which was posted on its official website, the RDW clarified that it does not disclose details about ongoing manufacturer applications due to competitive sensitivity. However, the agency confirmed that both parties have agreed on a February 2026 window during which Tesla is expected to show that FSD (Supervised) can meet required safety and compliance standards. Whether Tesla can satisfy those conditions within the timeline “remains to be seen,” RDW added.

RDW also directly addressed Tesla’s social media request encouraging drivers to contact the regulator to express support. While thanking those who already reached out, RDW asked the public to stop contacting them, noting these messages burden customer-service resources and have no influence on the approval process. 

“In the message on X, Tesla calls on Tesla drivers to thank the RDW and to express their enthusiasm about this planning to us by contacting us. We thank everyone who has already done so, and would like to ask everyone not to contact us about this. It takes up unnecessary time for our customer service. Moreover, this will have no influence on whether or not the planning is met,” the RDW wrote. 

Advertisement
-->

The RDW shares insights on EU approval requirements

The RDW further outlined how new technology enters the European market when no existing legislation directly covers it. Under EU Regulation 2018/858, a manufacturer may seek an exemption for unregulated features such as advanced driver assistance systems. The process requires a Member State, in this case the Netherlands, to submit a formal request to the European Commission on the manufacturer’s behalf.

Approval then moves to a committee vote. A majority in favor would grant EU-wide authorization, allowing the technology across all Member States. If the vote fails, the exemption is valid only within the Netherlands, and individual countries must decide whether to accept it independently.

Before any exemption request can be filed, Tesla must complete a comprehensive type-approval process with the RDW, including controlled on-road testing. Provided that FSD Supervised passes these regulatory evaluations, the exemption could be submitted for broader EU consideration.

Continue Reading

News

Tesla says Europe could finally get FSD in 2026, and Dutch regulator RDW is key

As per Tesla, a Dutch regulatory exemption targeted for February 2026 could very well be the key gateway for a Europe-wide rollout of FSD.

Published

on

Credit: Grok Imagine

Tesla has shared its most detailed timeline yet for bringing Full Self-Driving (Supervised) to Europe. The electric vehicle maker posted its update through the official X account of Tesla Europe & Middle East. 

As per Tesla, a Dutch regulatory exemption targeted for February 2026 could very well be the key gateway for a Europe-wide rollout of FSD.

Tesla pushes for EU approval

Tesla stated that it has spent more than 12 months working directly with European authorities and delivering FSD demonstrations to regulators in several EU member state. Tesla highlighted a number of its efforts for FSD’s release in Europe, such as safety documentation for FSD, which is now included in its latest public Safety Report, and over 1 million kilometers of internal testing conducted on EU roads across 17 countries.

To unlock approval, Tesla is relying on the Netherlands’ approval authority RDW. The process requires proving compliance with UN-R-171 for driver-assist systems while also filing Article 39 exemptions for behaviors that remain unregulated in Europe, such as hands-off system-initiated lane changes and Level 2 operation on roads that are not fully covered by current rules. Tesla argued that these functions cannot be retrofitted or adjusted into existing frameworks without compromising safety and performance.

“Some of these regulations are outdated and rules-based, which makes FSD illegal in its current form. Changing FSD to be compliant with these rules would make it unsafe and unusable in many cases. While we have changed FSD to be maximally compliant where it is logical and reasonable, we won’t sacrifice the safety of a proven system or materially deteriorate customer usability,” Tesla wrote in its post. 

Advertisement
-->

Tesla targets February 2026 approval

According to Tesla, real-world safety data alone has not been considered sufficient by EU regulators, prompting the company to gather evidence to get exemptions on a specific rule-by-rule basis. RDW has reportedly committed to issuing a Netherlands National approval in February 2026, which could pave the way for other EU countries to recognize the exemption and possibly authorize local deployment of FSD. 

“Currently, RDW has committed to granting Netherlands National approval in February 2026. Please contact them via link below to express your excitement & thank them for making this happen as soon as possible. Upon NL National approval, other EU countries can immediately recognize the exemption and also allow rollout within their country. Then we will bring it to a TCMV vote for official EU-wide approval. We’re excited to bring FSD to our owners in Europe soon!” Tesla wrote in its post. 

Continue Reading