Connect with us

News

SpaceX’s upgraded Super Heavy booster sails through first major test

Published

on

SpaceX’s first upgraded 33-engine Super Heavy booster appears to have passed a crucial test with surprising ease, boding well for a smooth qualification process.

Attempting that test so early on did not appear to be SpaceX’s initial plan. Instead, shortly before Super Heavy Booster 4’s third and likely final removal from Starbase’s ‘orbital launch mount’ (OLM) on March 24th, SpaceX transported a massive structural test stand from a Starbase storage yard to the orbital launch site (OLS), where technicians have focused on modifying nearby ground systems to support apparent structural testing of Super Heavy Booster 7. As of March 31st, all available evidence suggested that SpaceX was preparing that stand to verify Booster 7’s mechanical strength and simulate the major stresses it might experience before investing a significant amount of time and resources in qualification testing.

However, SpaceX appeared to change its plans at the last minute.

Instead of starting with structural testing, after a brief two-day pause, SpaceX rolled Super Heavy B7 into place and craned the giant booster onto the orbital launch mount on April 2nd. On April 3rd, the launch mount’s “quick disconnect” device connected Super Heavy to the pad’s ground systems. On April 4th, just two days after its installation on the OLM, Super Heavy B7 kicked off the first in a series of qualification tests that will determine when or if the booster ultimately supports Starship’s first orbital launch attempt.

If testing goes perfectly, SpaceX CEO Elon Musk recently stated that Starship and Super Heavy – likely Ship 24 and Booster 7 – could be ready for an inaugural orbital launch attempt as early as May 2022. SpaceX appears to have leaped headfirst into Super Heavy Booster 7 qualification testing in a move that significantly increases the likelihood of meeting that extremely ambitious schedule. Normally, with a first-of-its-kind prototype debuting multiple significant design changes, SpaceX would start slow, possibly beginning with a basic pneumatic proof test to verify structural integrity at flight pressures – about 6.5-8.5 bar (95-125 psi) – with benign nitrogen gas before calling it a day.

Advertisement

With Booster 7, SpaceX likely still performed a quick pneumatic proof but then immediately proceeded into a full-scale cryogenic proof test. With Super Heavy B4, for example, SpaceX performed several increasingly ambitious cryogenic proof tests, filling the booster more and more each attempt but never actually topping it off. On Booster 7’s very first day of testing and first cryogenic proof attempt, SpaceX fully loaded the upgraded Super Heavy with a cryogenic fluid (likely liquid nitrogen) in just two hours – all with no significant unplanned holds (pauses).

In those two hours, SpaceX likely loaded Super Heavy B7’s liquid methane (LCH4) and oxygen (LOx) tanks with roughly 3400 metric tons (~7.5M lb) of liquid nitrogen (LN2) – not far off what Super Heavy would actually weigh at liftoff. At the peak of the test, Booster 7 was almost entirely covered in a thin layer of ice produced as the cryogenic liquid inside its tanks froze water vapor in the humid South Texas air onto its skin – an effect that effectively turns uninsulated cryogenic rockets into giant fill gauges. On top of running into no apparent issues, Super Heavy B7’s first cryogenic proof is also the first time any Super Heavy prototype has been fully filled during testing – an important milestone for any rocket prototype, let alone the largest rocket booster ever built.

Completing a full cryogenic proof test on its first try makes Booster 7 fairly unique among all Starship prototypes – not just Super Heavies. The contrast with Booster 4, which barely completed a handful of partial cryogenic proof tests in more than half a year spent at Starbase’s orbital launch site, is also extremely encouraging, suggesting that Booster 7 won’t be sitting inactive for months at a time.

Still, cryogenic proofing is just one of several important tests Booster 7 needs to complete. Even if the first test was nearly perfect and SpaceX doesn’t attempt one or several more cryoproofs with higher tank pressures or other tweaked variables, Super Heavy B7 needs to complete wet dress rehearsal testing (WDR) with flammable LCH4/LOx propellant and demonstrate autogenous pressurization (using heated propellant gas to pressure its tanks). At some point, SpaceX will also need to install a full 33 Raptor V2 engines on the booster and seal off the whole engine section and each Raptor with a heat shield.

Booster 4’s 29 partially shielded Raptor engines. (Starship Gazer)
B4’s fully shielded engine section. (NASASpaceflight)
At the moment, B7 has no Raptors and no shielding installed. (NASASpaceflight – bocachicagal)

Depending on how many Raptor V2 engines are available, SpaceX could begin static fire testing with just a few engines installed and shielded and then install the rest of the engines and heat shield later on. On the other hand, performing static fires without a full heat shield could risk damaging unprotected cabling or other subsystems, in which case wet dress rehearsal testing would likely follow immediately after cryoproofing and before engine or shield installation. After being skipped over, the structural test stand may also factor into Booster 7 qualification sometime before engine installation.

All told, plenty of uncertainty remains, but Super Heavy B7’s auspicious start suggests that the Booster 4 experience is far from a template and that SpaceX is much less interested in wasting time this time around.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

News

Tesla Model Y may gain an extra 90 miles of range with Panasonic’s next-gen battery

The Japanese company is pursuing an anode-free design.

Published

on

Credit: Tesla Manufacturing

Panasonic is developing a new high-capacity EV battery that could potentially extend the range of a Tesla Model Y by 90 miles. 

The Japanese company, one of Tesla’s key battery suppliers, is pursuing an anode-free design that it says could deliver a “world-leading” level of capacity by the end of 2027.

Panasonic’s anode-free design

The technology Panasonic is pursuing would eliminate the anode during the manufacturing process, as noted in a Reuters report. By freeing up space for more active cathode materials such as nickel, cobalt, and aluminum, the Japanese company expects a 25% increase in capacity without expanding battery size. 

That could allow Tesla’s Model Y to gain an estimated 145 kilometers (90 miles) of additional range if equipped with a battery that matches its current pack’s size. At the same time, Panasonic could use smaller, lighter batteries to achieve the Model Y’s current range. 

Panasonic also aims to reduce reliance on nickel, which remains one of the more costly raw materials. A senior executive previewed the initiative to reporters ahead of a scheduled presentation by Panasonic Energy’s technology chief, Shoichiro Watanabe.

Advertisement

Tesla implications

The breakthrough, if achieved, could strengthen Panasonic’s position as Tesla’s longest-standing battery partner at a time when the automaker is preparing to enter an era of extreme scale driven by high-volume products like the Cybercab and Optimus.

Elon Musk has stated that products like Optimus would be manufactured at very high scale, so it would likely be an all-hands-on-deck situation for the company’s suppliers.

Panasonic did not share details on production costs or how quickly the new batteries might scale for commercial applications. That being said, the Japanese supplier has long been a partner of Tesla, so it makes sense for the company to also push for the next generation of battery innovation while the EV maker pursues even more lofty ambitions.

Continue Reading

Elon Musk

Tesla called ‘biggest meme stock we’ve ever seen’ by Yale associate dean

Published

on

Credit: Tesla

Tesla (NASDAQ: TSLA) is being called “the biggest meme stock we’ve ever seen” by Yale School of Management Senior Associate Dean Jeff Sonnenfeld, who made the comments in a recent interview with CNBC.

Sonnenfeld’s comments echo those of many of the company’s skeptics, who argue that its price-to-earnings ratio is far too high when compared to other companies also in the tech industry. Tesla is often compared to companies like Apple, Nvidia, and Microsoft when these types of discussions come up.

Fundamentally, yes, Tesla does trade at a P/E level that is significantly above that of any comparable company.

However, it is worth mentioning that Tesla is not traded like a typical company, either.

Here’s what Sonnenfeld said regarding Tesla:

“This is the biggest meme stock we’ve ever seen. Even at its peak, Amazon was nowhere near this level. The PE on this, well above 200, is just crazy. When you’ve got stocks like Nvidia, the price-earnings ratio is around 25 or 30, and Apple is maybe 35 or 36, Microsoft around the same. I mean, this is way out of line to be at a 220 PE. It’s crazy, and they’ve, I think, put a little too much emphasis on the magic wand of Musk.”

Many analysts have admitted in the past that they believe Tesla is an untraditional stock in the sense that many analysts trade it based on narrative and not fundamentals. Ryan Brinkman of J.P. Morgan once said:

“Tesla shares continue to strike us as having become completely divorced from the fundamentals.”

Dan Nathan, another notorious skeptic of Tesla shares, recently turned bullish on the stock because of “technicals and sentiment.” He said just last week:

“I think from a trading perspective, it looks very interesting.”

Nathan said Tesla shares show signs of strength moving forward, including holding its 200-day moving average and holding against current resistance levels.

Sonnenfeld’s synopsis of Tesla shares points out that there might be “a little too much emphasis on the magic wand of Musk.”

Elon Musk just bought $1 billion in Tesla stock, his biggest purchase ever

This could refer to different things: perhaps his recent $1 billion stock buy, which sent the stock skyrocketing, or the fact that many Tesla investors are fans and owners who do not buy and sell on numbers, but rather on news that Musk might report himself.

Tesla is trading around $423.76 at the time of publication, as of 3:25 p.m. on the East Coast.

Continue Reading

News

Tesla makes big change to Full Self-Driving doghouse that drivers will like

Now, it is changing the timeframe of which strikes will be removed, cutting it in half. The strikes will be removed every 3.5 days, as long as no strikes are received during the time period.

Published

on

tesla cabin facing camera
Tesla's Cabin-facing camera is used to monitor driver attentiveness. (Credit: Andy Slye/YouTube)

Tesla is making a big change to its Full Self-Driving doghouse that drivers will like.

The doghouse is a hypothetical term used to describe the penalty period that Tesla applies to drivers who receive too many infractions related to distracted driving.

Previously, Tesla implemented a seven-day ban on the use of Full Self-Driving for those who received five strikes in a vehicle equipped with a cabin camera and three strikes for those without a cabin camera.

It also forgave one strike per week of Full Self-Driving use, provided the driver did not receive any additional strikes during the seven-day period.

Now, it is changing the timeframe of which strikes will be removed, cutting it in half. The strikes will be removed every 3.5 days, as long as no strikes are received during the time period.

The change was found by Not a Tesla App, which noticed the adjustment in the Owner’s Manual for the 2025.32 Software Update.

The system undoubtedly helps improve safety as it helps keep drivers honest. However, there are definitely workarounds, which people are using and promoting for monetary gain, and you can find them on basically any online marketplace, including TikTok shop and Amazon:

People are marketing the product as an FSD cheat device, which the cabin-facing camera will not be able to detect, allowing you to watch something on a phone or look through the windshield at the road.

The safeguards implemented by Tesla are designed to protect drivers from distractions and also protect the company itself from liability. People are still using Full Self-Driving as if it were a fully autonomous product, and it is not.

Tesla even says that the driver must pay attention and be ready to take over in any scenario:

“Yes. Autopilot is a driver assistance system that is intended to be used only with a fully attentive driver. It does not turn a Tesla into a fully autonomous vehicle.

Before enabling Autopilot, you must agree to “keep your hands on the steering wheel at all times” and to always “maintain control and responsibility for your vehicle.” Once engaged, Autopilot will also deliver an escalating series of visual and audio warnings, reminding you to place your hands on the wheel if insufficient torque is applied or your vehicle otherwise detects you may not be attentive enough to the road ahead. If you repeatedly ignore these warnings, you will be locked out from using Autopilot during that trip.

You can override any of Autopilot’s features at any time by steering or applying the accelerator at any time.”

It is good that Tesla is rewarding those who learn from their mistakes with this shorter timeframe to lose the strikes. It won’t be needed forever, though, as eventually, the company will solve autonomy. The question is: when?

Continue Reading

Trending