News
SpaceX’s upgraded Super Heavy booster sails through first major test
SpaceX’s first upgraded 33-engine Super Heavy booster appears to have passed a crucial test with surprising ease, boding well for a smooth qualification process.
Attempting that test so early on did not appear to be SpaceX’s initial plan. Instead, shortly before Super Heavy Booster 4’s third and likely final removal from Starbase’s ‘orbital launch mount’ (OLM) on March 24th, SpaceX transported a massive structural test stand from a Starbase storage yard to the orbital launch site (OLS), where technicians have focused on modifying nearby ground systems to support apparent structural testing of Super Heavy Booster 7. As of March 31st, all available evidence suggested that SpaceX was preparing that stand to verify Booster 7’s mechanical strength and simulate the major stresses it might experience before investing a significant amount of time and resources in qualification testing.
However, SpaceX appeared to change its plans at the last minute.
Instead of starting with structural testing, after a brief two-day pause, SpaceX rolled Super Heavy B7 into place and craned the giant booster onto the orbital launch mount on April 2nd. On April 3rd, the launch mount’s “quick disconnect” device connected Super Heavy to the pad’s ground systems. On April 4th, just two days after its installation on the OLM, Super Heavy B7 kicked off the first in a series of qualification tests that will determine when or if the booster ultimately supports Starship’s first orbital launch attempt.
If testing goes perfectly, SpaceX CEO Elon Musk recently stated that Starship and Super Heavy – likely Ship 24 and Booster 7 – could be ready for an inaugural orbital launch attempt as early as May 2022. SpaceX appears to have leaped headfirst into Super Heavy Booster 7 qualification testing in a move that significantly increases the likelihood of meeting that extremely ambitious schedule. Normally, with a first-of-its-kind prototype debuting multiple significant design changes, SpaceX would start slow, possibly beginning with a basic pneumatic proof test to verify structural integrity at flight pressures – about 6.5-8.5 bar (95-125 psi) – with benign nitrogen gas before calling it a day.
With Booster 7, SpaceX likely still performed a quick pneumatic proof but then immediately proceeded into a full-scale cryogenic proof test. With Super Heavy B4, for example, SpaceX performed several increasingly ambitious cryogenic proof tests, filling the booster more and more each attempt but never actually topping it off. On Booster 7’s very first day of testing and first cryogenic proof attempt, SpaceX fully loaded the upgraded Super Heavy with a cryogenic fluid (likely liquid nitrogen) in just two hours – all with no significant unplanned holds (pauses).
In those two hours, SpaceX likely loaded Super Heavy B7’s liquid methane (LCH4) and oxygen (LOx) tanks with roughly 3400 metric tons (~7.5M lb) of liquid nitrogen (LN2) – not far off what Super Heavy would actually weigh at liftoff. At the peak of the test, Booster 7 was almost entirely covered in a thin layer of ice produced as the cryogenic liquid inside its tanks froze water vapor in the humid South Texas air onto its skin – an effect that effectively turns uninsulated cryogenic rockets into giant fill gauges. On top of running into no apparent issues, Super Heavy B7’s first cryogenic proof is also the first time any Super Heavy prototype has been fully filled during testing – an important milestone for any rocket prototype, let alone the largest rocket booster ever built.

Completing a full cryogenic proof test on its first try makes Booster 7 fairly unique among all Starship prototypes – not just Super Heavies. The contrast with Booster 4, which barely completed a handful of partial cryogenic proof tests in more than half a year spent at Starbase’s orbital launch site, is also extremely encouraging, suggesting that Booster 7 won’t be sitting inactive for months at a time.
Still, cryogenic proofing is just one of several important tests Booster 7 needs to complete. Even if the first test was nearly perfect and SpaceX doesn’t attempt one or several more cryoproofs with higher tank pressures or other tweaked variables, Super Heavy B7 needs to complete wet dress rehearsal testing (WDR) with flammable LCH4/LOx propellant and demonstrate autogenous pressurization (using heated propellant gas to pressure its tanks). At some point, SpaceX will also need to install a full 33 Raptor V2 engines on the booster and seal off the whole engine section and each Raptor with a heat shield.



Depending on how many Raptor V2 engines are available, SpaceX could begin static fire testing with just a few engines installed and shielded and then install the rest of the engines and heat shield later on. On the other hand, performing static fires without a full heat shield could risk damaging unprotected cabling or other subsystems, in which case wet dress rehearsal testing would likely follow immediately after cryoproofing and before engine or shield installation. After being skipped over, the structural test stand may also factor into Booster 7 qualification sometime before engine installation.
All told, plenty of uncertainty remains, but Super Heavy B7’s auspicious start suggests that the Booster 4 experience is far from a template and that SpaceX is much less interested in wasting time this time around.
News
Tesla FSD’s newest model is coming, and it sounds like ‘the last big piece of the puzzle’
“There’s a model that’s an order of magnitude larger that will be deployed in January or February 2026.”
Tesla Full Self-Driving’s newest model is coming very soon, and from what it sounds like, it could be “the last big piece of the puzzle,” as CEO Elon Musk said in late November.
During the xAI Hackathon on Tuesday, Musk was available for a Q&A session, where he revealed some details about Robotaxi and Tesla’s plans for removing Robotaxi Safety Monitors, and some information on a future FSD model.
While he said Full Self-Driving’s unsupervised capability is “pretty much solved,” and confirmed it will remove Safety Monitors in the next three weeks, questions about the company’s ability to give this FSD version to current owners came to mind.
Musk said a new FSD model is coming in about a month or two that will be an order-of-magnitude larger and will include more reasoning and reinforcement learning.
He said:
“There’s a model that’s an order of magnitude larger that will be deployed in January or February 2026. We’re gonna add a lot of reasoning and RL (reinforcement learning). To get to serious scale, Tesla will probably need to build a giant chip fab. To have a few hundred gigawatts of AI chips per year, I don’t see that capability coming online fast enough, so we will probably have to build a fab.”
NEWS: Elon Musk says FSD Unsupervised is “pretty much solved at this point” and that @Tesla will be launching Robotaxis with no safety monitors in about 3 weeks in Austin, Texas. He also teased a new FSD model is coming in about 1-2 months.
“We’re just going through validation… https://t.co/Msne72cgMB pic.twitter.com/i3wfKX3Z0r
— Sawyer Merritt (@SawyerMerritt) December 10, 2025
It rings back to late November when Musk said that v14.3 “is where the last big piece of the puzzle finally lands.”
With the advancements made through Full Self-Driving v14 and v14.2, there seems to be a greater confidence in solving self-driving completely. Musk has also personally said that driver monitoring has been more relaxed, and looking at your phone won’t prompt as many alerts in the latest v14.2.1.
This is another indication that Tesla is getting closer to allowing people to take their eyes off the road completely.
Along with the Robotaxi program’s success, there is evidence that Tesla could be close to solving FSD. However, it is not perfect. We’ve had our own complaints with FSD, and although we feel it is the best ADAS on the market, it is not, in its current form, able to perform everything needed on roads.
But it is close.
That’s why there is some legitimate belief that Tesla could be releasing a version capable of no supervision in the coming months.
All we can say is, we’ll see.
Investor's Corner
SpaceX IPO is coming, CEO Elon Musk confirms
However, it appears Musk is ready for SpaceX to go public, as Ars Technica Senior Space Editor Eric Berger wrote an op-ed that indicated he thought SpaceX would go public soon. Musk replied, basically confirming it.
Elon Musk confirmed through a post on X that a SpaceX initial public offering (IPO) is on the way after hinting at it several times earlier this year.
It also comes one day after Bloomberg reported that SpaceX was aiming for a valuation of $1.5 trillion, adding that it wanted to raise $30 billion.
Musk has been transparent for most of the year that he wanted to try to figure out a way to get Tesla shareholders to invest in SpaceX, giving them access to the stock.
He has also recognized the issues of having a public stock, like litigation exposure, quarterly reporting pressures, and other inconveniences.
However, it appears Musk is ready for SpaceX to go public, as Ars Technica Senior Space Editor Eric Berger wrote an op-ed that indicated he thought SpaceX would go public soon.
Musk replied, basically confirming it:
As usual, Eric is accurate
— Elon Musk (@elonmusk) December 10, 2025
Berger believes the IPO would help support the need for $30 billion or more in capital needed to fund AI integration projects, such as space-based data centers and lunar satellite factories. Musk confirmed recently that SpaceX “will be doing” data centers in orbit.
AI appears to be a “key part” of SpaceX getting to Musk, Berger also wrote. When writing about whether or not Optimus is a viable project and product for the company, he says that none of that matters. Musk thinks it is, and that’s all that matters.
It seems like Musk has certainly mulled something this big for a very long time, and the idea of taking SpaceX public is not just likely; it is necessary for the company to get to Mars.
The details of when SpaceX will finally hit that public status are not known. Many of the reports that came out over the past few days indicate it would happen in 2026, so sooner rather than later.
But there are a lot of things on Musk’s plate early next year, especially with Cybercab production, the potential launch of Unsupervised Full Self-Driving, and the Roadster unveiling, all planned for Q1.
News
Tesla adds 15th automaker to Supercharger access in 2025
Tesla has added the 15th automaker to the growing list of companies whose EVs can utilize the Supercharger Network this year, as BMW is the latest company to gain access to the largest charging infrastructure in the world.
BMW became the 15th company in 2025 to gain Tesla Supercharger access, after the company confirmed to its EV owners that they could use any of the more than 25,000 Supercharging stalls in North America.
Welcome @BMW owners.
Download the Tesla app to charge → https://t.co/vnu0NHA7Ab
— Tesla Charging (@TeslaCharging) December 10, 2025
Newer BMW all-electric cars, like the i4, i5, i7, and iX, are able to utilize Tesla’s V3 and V4 Superchargers. These are the exact model years, via the BMW Blog:
- i4: 2022-2026 model years
- i5: 2024-2025 model years
- 2026 i5 (eDrive40 and xDrive40) after software update in Spring 2026
- i7: 2023-2026 model years
- iX: 2022-2025 model years
- 2026 iX (all versions) after software update in Spring 2026
With the expansion of the companies that gained access in 2025 to the Tesla Supercharger Network, a vast majority of non-Tesla EVs are able to use the charging stalls to gain range in their cars.
So far in 2025, Tesla has enabled Supercharger access to:
- Audi
- BMW
- Genesis
- Honda
- Hyundai
- Jaguar Land Rover
- Kia
- Lucid
- Mercedes-Benz
- Nissan
- Polestar
- Subaru
- Toyota
- Volkswagen
- Volvo
Drivers with BMW EVs who wish to charge at Tesla Superchargers must use an NACS-to-CCS1 adapter. In Q2 2026, BMW plans to release its official adapter, but there are third-party options available in the meantime.
They will also have to use the Tesla App to enable Supercharging access to determine rates and availability. It is a relatively seamless process.