News
SpaceX’s second Super Heavy booster might land in Mechazilla’s arms
CEO Elon Musk says that SpaceX could attempt to catch a Super Heavy booster out of mid-air with a tower-sized ‘Mechazilla’ robot as early as Starship’s second orbital launch attempt.
Speaking on Twitter just hours after SpaceX installed said Starship launch tower’s first arms, Musk has thankfully answered a question on the minds of many: how many prototype boosters must be expended? In a move that can be only described as unexpected, SpaceX revealed plans to fully expend its first orbital-class Starship and Super Heavy booster pair in May 2021 FCC filings, confirming (or strongly implying) that no true recovery attempts would be made.
Instead, in what could be described as a quasi-orbital debut, SpaceX intends to launch the first two-stage Starship to an altitude of around 200-300 km (TBD). Like many Falcon boosters, Super Heavy will separate a few minutes after liftoff, flip around, and boost back towards the South Texas coast, where it will attempt a soft landing 20 miles offshore in the Gulf of Mexico. Reading between the lines of Musk’s latest info, depending on the results of that ocean landing attempt, SpaceX might attempt to catch the second flightworthy Super Heavy booster on the very next launch.
Heading towards a similar fate, Starship will continue onwards and upwards like a Falcon upper stage. Based on its FCC application, SpaceX seems to have implied that Starship will stop just short of true orbit – traveling slow enough to passively reenter Earth’s atmosphere before completing a full trip around the planet. Of course, it’s possible that SpaceX simply left out plans for an intentional deorbit burn, but it does make sense that the company might try to lock in safeguards for such an ambitious inaugural test flight.
In other words, if Starship were to fail during the ~80 minutes it would spend coasting in space, its launch trajectory design would more or less passively prevent a Russian roulette scenario reminiscent of China’s recent spate of uncontrolled reentries. The feats facing Super Heavy are thankfully a fair bit simpler, though Starship booster recovery does pose its own hurdles.
In an apparent effort to reduce risk, SpaceX intends to fully expend the first flightworthy Super Heavy (potentially Booster 4) and all 29 of its Raptor engines. There will be no attempt at all to land the booster or its one-of-a-kind engines at land or on a sea-based platform – partly because Elon Musk appears to have endeavored to entirely prevent the installation – and, perhaps, the design and assembly – of legs. Instead, in one of the eccentric executive’s less intuitive gambles as of late, SpaceX will entirely dispense of more than half a decade of experience landing 90+ Falcon boosters on legs to attempt to catch Super Heavy boosters out of the air with house-sized arms tacked onto a 145m (~475 ft) tall tower.

No different than a hypothetical landing with legs, Super Heavy will still have to boost back to land, coast, and fire up several Raptor engines for a final landing burn – only on tiny handle-like hardpoints and giant moving arms instead of legs and a concrete pad. If catching boosters eventually proves reliable enough to be a worthwhile reinvention of the wheel, the only apparent benefit of the approach will be a slight reduction in Super Heavy’s dry mass.
According to Musk, though, SpaceX might not have to wait long to find out just how viable a recovery method ‘Mechazilla’ really is and will “hopefully” attempt to catch Super Heavy Booster 5 (B5) after Starship’s second orbital launch attempt. Presumably, that attempt is contingent upon FAA approval and on Booster 4 successfully simulating a smooth, accurate landing in the Gulf, as even a minor issue during a catch attempt could catastrophically damage pad hardware that would take months to repair or replace.
For now, it’s almost impossible to say when Starship S20 and Super Heavy B4 will be ready for their orbital launch debut, as that now lies almost solely in the hands of the FAA. In theory, the FAA could complete environmental reviews and grant SpaceX a launch license as few as two or so months from now. In practice, SpaceX could be forced to sit and wait for at least 6-12 more months. Regardless, SpaceX has already begun assembling and staging sections of Ship 21 and Booster 5, so the company could be ready for an extremely rapid turnaround (and Mechazilla’s first catch attempt) after Starship’s orbital launch debut – whenever that may come.
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.
Elon Musk
SpaceX Starship V3 gets launch date update from Elon Musk
The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.
The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability.
The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.
Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.
“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.