News
SpaceX moves Super Heavy booster to make room for Mechazilla arm installation
For the second time, SpaceX has removed the first potentially flightworthy Super Heavy from Starbase’s orbital launch mount – this time to reportedly make room for the installation of a pair of huge ‘Mechazilla’ arms.
Designed with three primary purposes in mind, SpaceX has decided to outfit Starbase’s Starship launch tower – an almost 500 ft (150m) tall framework – with three massive arms that CEO Elon Musk has informally deemed “Mechazilla.” The first of those arms is a relatively simple swinging structure that has already been installed on the tower and outfitted with a giant claw-like appendage. Once a few more parts are installed and a bit more plumbing completed, that “quick disconnect arm” or QD arm will help stabilize Super Heavy during Starship installation and connect the massive reusable upper stage to the pad’s tank farm and power supplies while still on the ground.
The star of the show, though, has always been a pair of even larger arms that are hoped to one day all SpaceX to catch Super Heavy boosters and Starships out of the air.
Of course, those catcher arms – deemed chopsticks by SpaceX employees – have more than one purpose. Likely explaining why they were ever considered in the first place, SpaceX’s Starbase launch site – situated walking distance from the Gulf of Mexico on the South Texas coast – was always going to have to deal with extreme weather and high winds on a practically daily basis. Additionally, conditions that are already disruptive at sea level become a near-constant nightmare for vertical launch vehicle integration, where Starship and Super Heavy are effectively hollow cylinders with extensive surface areas that need to be regularly and precisely manipulated 50-150m (200-450 ft) above the ground.
Already, SpaceX regularly has to halt work involving cranes and boom lifts at Starbase. For Starbase (Boca Chica) to ever be able to support regular orbital Starship launches, let alone the dozens to hundreds per year Musk has hinted at, cranes were never going to be a viable long-term solution for the all-weather capabilities and rapid reusability SpaceX requires. In other words, whether SpaceX ever actually manages to routinely ‘catch’ the world’s largest rocket booster and upper stage in the future, a tower with giant arms (or some other exotic crane-free solution) was always going to be needed at Starbase.
Mauricio, thanks for the shout-out. I got some great feedback from folks and updated this diagram once more. Added another @NicAnsuini photo to show the scale of these parts! pic.twitter.com/o54hdBITfL— LunarCaveman (@LunarCaveman) September 16, 2021

This is all to say that the Starship launch tower’s massive pair of arms – (in)famous for Musk’s plans to catch rockets – have a more immediate and guaranteed purpose: lifting, stacking, and otherwise manipulating Starship and Super Heavy in almost all weather conditions. Using tiny hardpoints located just under Super Heavy’s grid fins and (once installed) under Starship’s forward flaps, the chopstick arms will be mounted on a carriage that will attach to rails installed on the exterior of three of the tower’s arms. A complex system of cables, winches, motors, and pulleys will then attach to that carriage, giving the carriage and its arms the ability to move up and down the tower.
In theory, that means that the launch tower arms will be able to drop down, grab Super Heavy off of a SpaceX transporter, and lift it onto the orbital launch mount. Then, once the quick disconnect arm has swung into place and ‘grabbed’ Super Heavy’s interstage to secure it, the main arms will again drop down, grab Starship off of another transporter, and raise the 50m (~165 ft) rocket around 100m off the ground to install it on top of Super Heavy. Finally, the QD arm can then connect Starship to the pad systems.


SpaceX has been working around the clock on those chopstick arms for months. However, thanks to information shared by a forum member who visited Starbase and briefly chatted with one of the SpaceX technicians on-site, they might be almost finished. According to the employee they spoke with, SpaceX planned to temporarily remove Super Heavy Booster 4 from the orbital launch mount to make room for Mechazilla chopstick arm installation as early as this weekend (now come and gone) or next week. Mere days later, SpaceX returned B4 to a transport stand and moved the booster out of the way. In other words, having already been proven right with Super Heavy, it appears that SpaceX really does intend to install the Starship launch tower’s chopstick arms and carriage as early as this week. Stay tuned for more!
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.