Connect with us

News

SpaceX moves Super Heavy booster to make room for Mechazilla arm installation

SpaceX has temporarily relocated the first flightworthy Super Heavy booster to make way for Mechazilla arm installation. (NASASpaceflight - bocachicagal)

Published

on

For the second time, SpaceX has removed the first potentially flightworthy Super Heavy from Starbase’s orbital launch mount – this time to reportedly make room for the installation of a pair of huge ‘Mechazilla’ arms.

Designed with three primary purposes in mind, SpaceX has decided to outfit Starbase’s Starship launch tower – an almost 500 ft (150m) tall framework – with three massive arms that CEO Elon Musk has informally deemed “Mechazilla.” The first of those arms is a relatively simple swinging structure that has already been installed on the tower and outfitted with a giant claw-like appendage. Once a few more parts are installed and a bit more plumbing completed, that “quick disconnect arm” or QD arm will help stabilize Super Heavy during Starship installation and connect the massive reusable upper stage to the pad’s tank farm and power supplies while still on the ground.

The star of the show, though, has always been a pair of even larger arms that are hoped to one day all SpaceX to catch Super Heavy boosters and Starships out of the air.

Of course, those catcher arms – deemed chopsticks by SpaceX employees – have more than one purpose. Likely explaining why they were ever considered in the first place, SpaceX’s Starbase launch site – situated walking distance from the Gulf of Mexico on the South Texas coast – was always going to have to deal with extreme weather and high winds on a practically daily basis. Additionally, conditions that are already disruptive at sea level become a near-constant nightmare for vertical launch vehicle integration, where Starship and Super Heavy are effectively hollow cylinders with extensive surface areas that need to be regularly and precisely manipulated 50-150m (200-450 ft) above the ground.

Already, SpaceX regularly has to halt work involving cranes and boom lifts at Starbase. For Starbase (Boca Chica) to ever be able to support regular orbital Starship launches, let alone the dozens to hundreds per year Musk has hinted at, cranes were never going to be a viable long-term solution for the all-weather capabilities and rapid reusability SpaceX requires. In other words, whether SpaceX ever actually manages to routinely ‘catch’ the world’s largest rocket booster and upper stage in the future, a tower with giant arms (or some other exotic crane-free solution) was always going to be needed at Starbase.

Advertisement
-->
The Starship launch tower’s “Mechazilla” rocket-catching arms. (NASASpaceflight – bocachicagal)

This is all to say that the Starship launch tower’s massive pair of arms – (in)famous for Musk’s plans to catch rockets – have a more immediate and guaranteed purpose: lifting, stacking, and otherwise manipulating Starship and Super Heavy in almost all weather conditions. Using tiny hardpoints located just under Super Heavy’s grid fins and (once installed) under Starship’s forward flaps, the chopstick arms will be mounted on a carriage that will attach to rails installed on the exterior of three of the tower’s arms. A complex system of cables, winches, motors, and pulleys will then attach to that carriage, giving the carriage and its arms the ability to move up and down the tower.

In theory, that means that the launch tower arms will be able to drop down, grab Super Heavy off of a SpaceX transporter, and lift it onto the orbital launch mount. Then, once the quick disconnect arm has swung into place and ‘grabbed’ Super Heavy’s interstage to secure it, the main arms will again drop down, grab Starship off of another transporter, and raise the 50m (~165 ft) rocket around 100m off the ground to install it on top of Super Heavy. Finally, the QD arm can then connect Starship to the pad systems.

Super Heavy Booster 4 was rolled to the suborbital pad for temporary storage after being removed from the orbital launch mount a second time. (NASASpaceflight – bocachicagal)

SpaceX has been working around the clock on those chopstick arms for months. However, thanks to information shared by a forum member who visited Starbase and briefly chatted with one of the SpaceX technicians on-site, they might be almost finished. According to the employee they spoke with, SpaceX planned to temporarily remove Super Heavy Booster 4 from the orbital launch mount to make room for Mechazilla chopstick arm installation as early as this weekend (now come and gone) or next week. Mere days later, SpaceX returned B4 to a transport stand and moved the booster out of the way. In other words, having already been proven right with Super Heavy, it appears that SpaceX really does intend to install the Starship launch tower’s chopstick arms and carriage as early as this week. Stay tuned for more!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence

The Tesla CEO shared his recent insights in a post on social media platform X.

Published

on

Credit: Tesla

Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk. 

The Tesla CEO shared his recent insights in a post on social media platform X.

Musk details AI chip roadmap

In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle. 

He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.

Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.

Advertisement
-->

AI5 manufacturing takes shape

Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.

Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.

Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.

Continue Reading

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading