Connect with us

News

SpaceX moves Super Heavy booster to make room for Mechazilla arm installation

SpaceX has temporarily relocated the first flightworthy Super Heavy booster to make way for Mechazilla arm installation. (NASASpaceflight - bocachicagal)

Published

on

For the second time, SpaceX has removed the first potentially flightworthy Super Heavy from Starbase’s orbital launch mount – this time to reportedly make room for the installation of a pair of huge ‘Mechazilla’ arms.

Designed with three primary purposes in mind, SpaceX has decided to outfit Starbase’s Starship launch tower – an almost 500 ft (150m) tall framework – with three massive arms that CEO Elon Musk has informally deemed “Mechazilla.” The first of those arms is a relatively simple swinging structure that has already been installed on the tower and outfitted with a giant claw-like appendage. Once a few more parts are installed and a bit more plumbing completed, that “quick disconnect arm” or QD arm will help stabilize Super Heavy during Starship installation and connect the massive reusable upper stage to the pad’s tank farm and power supplies while still on the ground.

The star of the show, though, has always been a pair of even larger arms that are hoped to one day all SpaceX to catch Super Heavy boosters and Starships out of the air.

Of course, those catcher arms – deemed chopsticks by SpaceX employees – have more than one purpose. Likely explaining why they were ever considered in the first place, SpaceX’s Starbase launch site – situated walking distance from the Gulf of Mexico on the South Texas coast – was always going to have to deal with extreme weather and high winds on a practically daily basis. Additionally, conditions that are already disruptive at sea level become a near-constant nightmare for vertical launch vehicle integration, where Starship and Super Heavy are effectively hollow cylinders with extensive surface areas that need to be regularly and precisely manipulated 50-150m (200-450 ft) above the ground.

Already, SpaceX regularly has to halt work involving cranes and boom lifts at Starbase. For Starbase (Boca Chica) to ever be able to support regular orbital Starship launches, let alone the dozens to hundreds per year Musk has hinted at, cranes were never going to be a viable long-term solution for the all-weather capabilities and rapid reusability SpaceX requires. In other words, whether SpaceX ever actually manages to routinely ‘catch’ the world’s largest rocket booster and upper stage in the future, a tower with giant arms (or some other exotic crane-free solution) was always going to be needed at Starbase.

Advertisement
-->
The Starship launch tower’s “Mechazilla” rocket-catching arms. (NASASpaceflight – bocachicagal)

This is all to say that the Starship launch tower’s massive pair of arms – (in)famous for Musk’s plans to catch rockets – have a more immediate and guaranteed purpose: lifting, stacking, and otherwise manipulating Starship and Super Heavy in almost all weather conditions. Using tiny hardpoints located just under Super Heavy’s grid fins and (once installed) under Starship’s forward flaps, the chopstick arms will be mounted on a carriage that will attach to rails installed on the exterior of three of the tower’s arms. A complex system of cables, winches, motors, and pulleys will then attach to that carriage, giving the carriage and its arms the ability to move up and down the tower.

In theory, that means that the launch tower arms will be able to drop down, grab Super Heavy off of a SpaceX transporter, and lift it onto the orbital launch mount. Then, once the quick disconnect arm has swung into place and ‘grabbed’ Super Heavy’s interstage to secure it, the main arms will again drop down, grab Starship off of another transporter, and raise the 50m (~165 ft) rocket around 100m off the ground to install it on top of Super Heavy. Finally, the QD arm can then connect Starship to the pad systems.

Super Heavy Booster 4 was rolled to the suborbital pad for temporary storage after being removed from the orbital launch mount a second time. (NASASpaceflight – bocachicagal)

SpaceX has been working around the clock on those chopstick arms for months. However, thanks to information shared by a forum member who visited Starbase and briefly chatted with one of the SpaceX technicians on-site, they might be almost finished. According to the employee they spoke with, SpaceX planned to temporarily remove Super Heavy Booster 4 from the orbital launch mount to make room for Mechazilla chopstick arm installation as early as this weekend (now come and gone) or next week. Mere days later, SpaceX returned B4 to a transport stand and moved the booster out of the way. In other words, having already been proven right with Super Heavy, it appears that SpaceX really does intend to install the Starship launch tower’s chopstick arms and carriage as early as this week. Stay tuned for more!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Full Self-Driving (FSD) testing gains major ground in Spain

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Spain’s ES-AV framework

Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.

“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote. 

The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Advertisement
-->
Credit: DGT

Tesla FSD tests

As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.

The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed. 

Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.

Continue Reading

News

Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.

Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.

FSD V14.2.1 first impressions

Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”

Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.

Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall. 

Advertisement
-->

Sign recognition and freeway prowess

Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.

FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.

FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”

Continue Reading

News

Tesla FSD Supervised ride-alongs in Europe begin in Italy, France, and Germany

The program allows the public to hop in as a non-driving observer to witness FSD navigate urban streets firsthand.

Published

on

Credit: Tesla

Tesla has kicked off passenger ride-alongs for Full Self-Driving (Supervised) in Italy, France and Germany. The program allows the public to hop in as a non-driving observer to witness FSD navigate urban streets firsthand. 

The program, detailed on Tesla’s event pages, arrives ahead of a potential early 2026 Dutch regulatory approval that could unlock a potential EU-wide rollout for FSD.

Hands-Off Demos

Tesla’s ride-along invites participants to “ride along in the passenger seat to experience how it handles real-world traffic & the most stressful parts of daily driving, making the roads safer for all,” as per the company’s announcement on X through its official Tesla Europe & Middle East account. 

Sign-ups via localized pages offer free slots through December, with Tesla teams piloting vehicles through city streets, roundabouts and highways.

“Be one of the first to experience Full Self-Driving (Supervised) from the passenger seat. Our team will take you along as a passenger and show you how Full Self-Driving (Supervised) works under real-world road conditions,” Tesla wrote. “Discover how it reacts to live traffic and masters the most stressful parts of driving to make the roads safer for you and others. Come join us to learn how we are moving closer to a fully autonomous future.”

Advertisement
-->

Building trust towards an FSD Unsupervised rollout

Tesla’s FSD (Supervised) ride-alongs could be an effective tool to build trust and get regular car buyers and commuters used to the idea of vehicles driving themselves. By seating riders shotgun, Tesla could provide participants with a front row seat to the bleeding edge of consumer-grade driverless systems.

FSD (Supervised) has already been rolled out to several countries, such as the United States, Canada, Australia, New Zealand, and partially in China. So far, FSD (Supervised) has been received positively by drivers, as it really makes driving tasks and long trips significantly easier and more pleasant.

FSD is a key safety feature as well, which became all too evident when a Tesla driving on FSD was hit by what seemed to be a meteorite in Australia. The vehicle moved safely despite the impact, though the same would likely not be true had the car been driven manually.

Continue Reading