News
SpaceX Super Heavy tank prototype survives crush testing
A tank prototype similar to SpaceX’s next-generation Super Heavy rocket booster has survived a series of tests that repeatedly attempted to destroy it.
Known as Booster 7.1 or B7.1, the tank is the latest in a long line of ‘test tanks’ designed to verify the performance of Starship and Super Heavy and qualify new designs and manufacturing techniques without risking an entire upper stage or booster. In general, that means that test tanks are as minimal as possible and much shorter than either Starship stage, but they’re also assembled out of nine-meter-wide (30 ft) steel barrels and domes almost identical to the sections that make up Starship and Super Heavy.
For most of the duration of SpaceX’s steel Starship program, ‘test tank’ work has followed a fairly consistent and linear development path, where tanks were used to verify design changes before those changes were implemented on more expensive prototypes. B7.1 firmly ignored that norm.
While it’s not an exact match, the tank – built out of two stacked rings and dome sections and measuring about 11 meters (~36 ft) tall – has a Super Heavy thrust structure (where Raptor engines would attach) and external stiffeners known as stringers that are (mostly) exclusive to Starship boosters.
As its name suggests, B7.1 shares many of the significant design changes that SpaceX had already implemented on Super Heavy Booster 7 (B7). The company began testing B7 months before B7.1, subjecting the full-size booster to multiple cryogenic proof tests and Raptor thrust simulation testing to qualify its new thrust ‘puck’ and several other structural changes. SpaceX began testing B7.1 in late June, shortly before Super Heavy Booster 7 was damaged by an unplanned explosion that halted its first Raptor engine test campaign. B7.1 testing then restarted in mid-July and was completed by the end of the month.
For unknown reasons, SpaceX’s decision to build and test Booster 7 before B7.1 meant that any significant issues discovered during subsequent B7.1 testing could disqualify the booster for flight testing, potentially wasting the months of work and tens of millions of dollars already invested in the prototype. Ultimately, though, B7.1 appeared to sail through multiple cryogenic proofs and crush tests without any catastrophic issues. Only on the last crush test did any part of the test tank finally give way, and the resulting damage was minor.


B7.1’s testing made use of a relatively new two-piece stand. The tank was first installed on a sturdy base using clamps similar to those on the Starbase orbital launch site’s (OLS) launch mount. Then, a hat-like structure was placed on top of the tank, resting on the surface that a Starship upper stage would sit on during launch. Massive ropes were finally dropped down to attach to hydraulic cylinders on the base. Once B7.1 was loaded with benign cryogenic liquid nitrogen (LN2), replicating most of the thermal and mechanical stresses of real oxygen/methane propellant, the hydraulic cylinders retracted, pulling the cap down to evenly exert massive crushing forces down the vertical axis of the test tank. Simultaneously, additional rams installed underneath B7.1 may have simulated the thrust of 13 central Raptor engines.
It’s unclear what exactly SpaceX was testing. The goal of the test could have been as simple as verifying that Super Heavy Booster 7 can withstand the weight of a fully-fueled Starship (~1350 tons / ~3M lb) sitting on top of it. It could have also been used to simulate an entire orbital launch from Super Heavy’s perspective, replicating many of the forces Starship boosters will experience between liftoff and landing. Given that Booster 7’s upgraded thrust puck had already made it through stress testing, B7.1 didn’t have much to add there, but it may have been useful for estimating the compressive strength of the current Super Heavy booster design.
Regardless of what B7.1 did or didn’t prove, it did so with very little drama. After four long days of testing, at least two of which involved attempting to crush the tank, the only truly noteworthy visual event was evidence of a slight buckle near the top of the tank during its last crush test. A few days later, with the test stand ‘cap’ removed, B7.1 survived one final test in which SpaceX likely attempted to pressurize the tank until it burst. Instead, the tank didn’t so much as develop a leak, reiterating – contrary to their occasional tin-can-like appearances – just how sturdy Starship and Super Heavy really are.

With nothing more to give, SpaceX will likely scrap B7.1. Meanwhile, Super Heavy Booster 7 remains stuck inside one of SpaceX’s Starbase assembly bays after being forced back to the factory by unintentionally explosive testing. The fate of that booster is unclear but SpaceX has removed all or most of its 33 Raptor engines over the last few weeks while simultaneously expediting work on Booster 8, which may ultimately take B7’s place.
News
Tesla Semi pricing revealed after company uncovers trim levels
This is a step up from the prices that were revealed back in 2017, but with inflation and other factors, it is no surprise Tesla could not come through on the numbers it planned to offer nine years ago. When the Semi was unveiled in November 2017, Tesla had three pricing levels:
Tesla Semi pricing appears to have been revealed after the company started communicating with the entities interested in purchasing its all-electric truck. The pricing details come just days after Tesla revealed it planned to offer two trim levels and uncovered the specs of each.
After CEO Elon Musk said the Semi would enter volume production this year, Tesla revealed trim levels shortly thereafter. Offering a Standard Range and a Long Range trim will fit the needs of many companies that plan to use the truck for local and regional deliveries.
Tesla Semi lines up for $165M in California incentives ahead of mass production
It will also be a good competitor to the all-electric semi trucks already available from companies like Volvo.
With the release of specs, Tesla helped companies see the big picture in terms of what the Semi could do to benefit their business. However, pricing information was not available.
A new report from Electrek states that Tesla has been communicating with those interested companies and is pricing the Standard Range at $250,000 per unit, while the Long Range is priced at $290,000. These prices come before taxes and destination fees.
$TSLA – TESLA IS QUOTING $290,000 FOR ITS 500-MILES ELECTRIC SEMI TRUCK – ELECTREK
— *Walter Bloomberg (@DeItaone) February 10, 2026
This is a step up from the prices that were revealed back in 2017, but with inflation and other factors, it is no surprise Tesla could not come through on the numbers it planned to offer nine years ago. When the Semi was unveiled in November 2017, Tesla had three pricing levels:
- $150,000 for a 300-mile range version
- $180,000 for a 500-mile range version
- $200,000 for a limited “Founders Series” edition; full upfront payment required for priority production and limited to just 1,000 units
Tesla has not officially released any specific information regarding pricing on the Semi, but it is not surprising that it has not done so. The Semi is a vehicle that will be built for businesses, and pricing information is usually reserved for those who place reservations. This goes for most products of this nature.
The Semi will be built at a new, dedicated production facility in Sparks, Nevada, which Tesla broke ground on in 2024. The factory was nearly complete in late 2025, and executives confirmed that the first “online builds” were targeted for that same time.
Meaningful output is scheduled for this year, as Musk reiterated earlier this week that it would enter mass production this year. At full capacity, the factory will build 50,000 units annually.
News
Tesla executive moves on after 13 years: ‘It has been a privilege to serve’
“It is challenging to encapsulate 13 years in a single post. The journey at Tesla has been one of continuous evolution. From the technical intricacies of designing, building, and operating one of the world’s largest AI clusters to impactful contributions in IT, Security, Sales, and Service, it has been a privilege to serve,” Jegannathan said in the post.
Tesla executive Raj Jegannathan is moving on from the company after 13 years, he announced on LinkedIn on Monday.
“It is challenging to encapsulate 13 years in a single post. The journey at Tesla has been one of continuous evolution. From the technical intricacies of designing, building, and operating one of the world’s largest AI clusters to impactful contributions in IT, Security, Sales, and Service, it has been a privilege to serve,” Jegannathan said in the post.
After starting as a Senior Staff Engineer in Fremont back in November 2012, Jegannathan slowly worked his way through the ranks at Tesla. His most recent role was Vice President of IT/AI Infrastructure, Business Apps, and Infosec.
However, it was reported last year that Jegannathan had taken on a new role, which was running the North American sales team following the departure of Troy Jones, who had held the position previously.
While Jegannathan’s LinkedIn does not mention this position specifically, it seemed to be accurate, considering Tesla had not explicitly promoted any other person to the role.
It is a big loss for Tesla, but not a destructive departure. Jegannathan was one of the few company executives who answered customer and fan questions on X, a unique part of the Tesla ownership experience.
Tesla to offer Full Self-Driving gifting program: here’s how it will work
It currently remains unclear if Jegannathan was removed from the position or if he left under his own accord.
“As I move on, I do so with a full heart and excitement for what lies ahead. Thank you, Tesla, for this wonderful opportunity!” he concluded.
The departure marks a continuing trend of executives leaving the company, as the past 24 months have seen some significant turnover at the executive level.
Tesla has shown persistently elevated executive turnover over the past two years, as names like Drew Baglino, Rohan Patel, Rebecca Tinucci, Daniel Ho, Omead Afshar, Milan Kovac, and Siddhant Awasthi have all been notable names to exit the company in the past two years.
There are several things that could contribute to this. Many skeptics will point to Elon Musk’s politics, but that is not necessarily the case.
Tesla is a difficult, but rewarding place to work. It is a company that requires a lot of commitment, and those who are halfway in might not choose to stick around. Sacrificing things like time with family might not outweigh the demands of Tesla and Musk.
Additionally, many of these executives have made a considerable amount of money thanks to stock packages the company offers to employees. While many might be looking for new opportunities, some might be interested in an early retirement.
Tesla is also in the process of transitioning away from its most notable division, automotive. While it still plans to manufacture cars in the millions, it is turning more focus toward robotics and autonomy, and these plans might not align with what some executives might want for themselves. There are a wide variety of factors in the decision to leave a job, so it is important not to immediately jump to controversy.
News
Lemonade launches Tesla FSD insurance program in Oregon
The program was announced by Lemonade co-founder Shai Wininger on social media platform X.
Tesla drivers in Oregon can now receive significant insurance discounts when using FSD, following the launch of Lemonade’s new Autonomous Car insurance program.
The program was announced by Lemonade co-founder Shai Wininger on social media platform X.
Lemonade launches FSD-based insurance in Oregon
In a post on X, Wininger confirmed that Lemondade’s Autonomous Car insurance product for Tesla is now live in Oregon. The program allows eligible Tesla owners to receive roughly 50% off insurance costs for every mile driven using Tesla’s FSD system.
“And… we’re ON. @Lemonade_Inc’s Autonomous Car for @Tesla FSD is now live in Oregon. Tesla drivers in Oregon can now get ~50% off their Tesla FSD-driven miles + the best car insurance experience in the US, bar none,” Wininger wrote in his post.
As per Lemonade on its official website, the program is built on Tesla’s safety data, which indicates that miles driven using FSD are approximately twice as safe as those driven manually. As a result, Lemonade prices those miles at a lower rate. The insurer noted that as FSD continues to improve, associated discounts could increase over time.
How Lemonade tracks FSD miles
Lemonade’s FSD discount works through a direct integration with Tesla vehicles, enabled only with a driver’s explicit permission. Once connected, the system distinguishes between miles driven manually and those driven using FSD, applying the discount automatically to qualifying miles.
There is no minimum FSD usage requirement. Drivers who use FSD occasionally still receive discounted rates for those miles, while non-FSD miles are billed at competitive standard rates. Lemonade also emphasized that coverage and claims handling remain unchanged regardless of whether a vehicle is operating under manual control or FSD at the time of an incident.
The program is currently available only to Teslas equipped with Hardware 4 or newer, running firmware version 2025.44.25.5 or later. Lemonade also allows policyholders to bundle Tesla insurance with renters, homeowners, pet, or life insurance policies for additional savings.