Connect with us

News

SpaceX Super Heavy tank prototype survives crush testing

Published

on

A tank prototype similar to SpaceX’s next-generation Super Heavy rocket booster has survived a series of tests that repeatedly attempted to destroy it.

Known as Booster 7.1 or B7.1, the tank is the latest in a long line of ‘test tanks’ designed to verify the performance of Starship and Super Heavy and qualify new designs and manufacturing techniques without risking an entire upper stage or booster. In general, that means that test tanks are as minimal as possible and much shorter than either Starship stage, but they’re also assembled out of nine-meter-wide (30 ft) steel barrels and domes almost identical to the sections that make up Starship and Super Heavy.

For most of the duration of SpaceX’s steel Starship program, ‘test tank’ work has followed a fairly consistent and linear development path, where tanks were used to verify design changes before those changes were implemented on more expensive prototypes. B7.1 firmly ignored that norm.

While it’s not an exact match, the tank – built out of two stacked rings and dome sections and measuring about 11 meters (~36 ft) tall – has a Super Heavy thrust structure (where Raptor engines would attach) and external stiffeners known as stringers that are (mostly) exclusive to Starship boosters.

As its name suggests, B7.1 shares many of the significant design changes that SpaceX had already implemented on Super Heavy Booster 7 (B7). The company began testing B7 months before B7.1, subjecting the full-size booster to multiple cryogenic proof tests and Raptor thrust simulation testing to qualify its new thrust ‘puck’ and several other structural changes. SpaceX began testing B7.1 in late June, shortly before Super Heavy Booster 7 was damaged by an unplanned explosion that halted its first Raptor engine test campaign. B7.1 testing then restarted in mid-July and was completed by the end of the month.

Advertisement

For unknown reasons, SpaceX’s decision to build and test Booster 7 before B7.1 meant that any significant issues discovered during subsequent B7.1 testing could disqualify the booster for flight testing, potentially wasting the months of work and tens of millions of dollars already invested in the prototype. Ultimately, though, B7.1 appeared to sail through multiple cryogenic proofs and crush tests without any catastrophic issues. Only on the last crush test did any part of the test tank finally give way, and the resulting damage was minor.

B7.1 was not the first test tank to use the ‘can crusher’ setup, but it was the first to do so under cryo conditions. B2.1 is pictured on top. (NASASpaceflight – bocachicagal)

B7.1’s testing made use of a relatively new two-piece stand. The tank was first installed on a sturdy base using clamps similar to those on the Starbase orbital launch site’s (OLS) launch mount. Then, a hat-like structure was placed on top of the tank, resting on the surface that a Starship upper stage would sit on during launch. Massive ropes were finally dropped down to attach to hydraulic cylinders on the base. Once B7.1 was loaded with benign cryogenic liquid nitrogen (LN2), replicating most of the thermal and mechanical stresses of real oxygen/methane propellant, the hydraulic cylinders retracted, pulling the cap down to evenly exert massive crushing forces down the vertical axis of the test tank. Simultaneously, additional rams installed underneath B7.1 may have simulated the thrust of 13 central Raptor engines.

It’s unclear what exactly SpaceX was testing. The goal of the test could have been as simple as verifying that Super Heavy Booster 7 can withstand the weight of a fully-fueled Starship (~1350 tons / ~3M lb) sitting on top of it. It could have also been used to simulate an entire orbital launch from Super Heavy’s perspective, replicating many of the forces Starship boosters will experience between liftoff and landing. Given that Booster 7’s upgraded thrust puck had already made it through stress testing, B7.1 didn’t have much to add there, but it may have been useful for estimating the compressive strength of the current Super Heavy booster design.

Regardless of what B7.1 did or didn’t prove, it did so with very little drama. After four long days of testing, at least two of which involved attempting to crush the tank, the only truly noteworthy visual event was evidence of a slight buckle near the top of the tank during its last crush test. A few days later, with the test stand ‘cap’ removed, B7.1 survived one final test in which SpaceX likely attempted to pressurize the tank until it burst. Instead, the tank didn’t so much as develop a leak, reiterating – contrary to their occasional tin-can-like appearances – just how sturdy Starship and Super Heavy really are.

A small, bent edge at the top of B7.1 is the only evidence that SpaceX repeatedly tried to destroy the tank. (NASASpaceflight – bocachicagal)

With nothing more to give, SpaceX will likely scrap B7.1. Meanwhile, Super Heavy Booster 7 remains stuck inside one of SpaceX’s Starbase assembly bays after being forced back to the factory by unintentionally explosive testing. The fate of that booster is unclear but SpaceX has removed all or most of its 33 Raptor engines over the last few weeks while simultaneously expediting work on Booster 8, which may ultimately take B7’s place.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Flight 10: What to expect

SpaceX implemented hardware and operational changes aimed at improving Starship’s reliability.

Published

on

Credit: SpaceX

SpaceX is preparing to launch the tenth test flight of its Starship vehicle as early as Sunday, August 24, with the launch window opening at 6:30 p.m. CT. 

The mission follows investigations into anomalies from earlier flights, including the loss of Starship on its ninth test and a Ship 36 static fire issue. SpaceX has since implemented hardware and operational changes aimed at improving Starship’s reliability.

Booster landing burns and flight experiments

The upcoming Starship Flight 10 will expand Super Heavy’s flight envelope with multiple landing burn trials. Following stage separation, the booster will attempt a controlled flip and boostback burn before heading to an offshore splashdown in the Gulf of America. One of the three center engines typically used for landing will be intentionally disabled, allowing engineers to evaluate whether a backup engine can complete the maneuver, according to a post from SpaceX.

The booster will also transition to a two-engine configuration for the final phase, hovering briefly above the water before shutdown and drop. These experiments are designed to simulate off-nominal scenarios and generate real-world data on performance under varying conditions, while maximizing propellant use during ascent to enable heavier payloads.

Starship upper stage reentry tests

The Starship upper stage will attempt multiple in-space objectives, including deployment of eight Starlink simulators and a planned Raptor engine relight. SpaceX will also continue testing reentry systems with several modifications. A section of thermal protection tiles has been removed to expose vulnerable areas, while new metallic tile designs, including one with active cooling, will be trialed.

Advertisement

Catch fittings have been installed to evaluate their thermal and structural performance, and adjustments to the tile line will address hot spots observed on Flight 6. The reentry profile is expected to push the structural limits of Starship’s rear flaps at maximum entry pressure.

SpaceX says lessons from these tests are critical to refining the next-generation Starship and Super Heavy vehicles. With Starfactory production ramping in Texas and new launch infrastructure under development in Florida, the company is pushing to hit its goal of achieving a fully reusable orbital launch system.

Continue Reading

Elon Musk

Elon Musk takes aim at Bill Gates’ Microsoft with new AI venture “Macrohard”

It is quite an appropriate name for a company that’s designed to rival Microsoft.

Published

on

Credit: xAI/X

Elon Musk has set his sights on Microsoft with a new company called “Macrohard,” a software venture tied to his AI startup, xAI. 

Musk described the project as a “purely AI software company” that’s designed to generate hundreds of specialized coding and generative AI agents that could one day simulate products from companies like Microsoft entirely through artificial intelligence.

Macrohard‘s Purpose

Musk announced Macrohard on Friday, though xAI had already registered the trademark with the US Patent Office a few weeks ago, as noted in a PC Mag report. Interestingly enough, this is not the first time that Musk has mentioned such an initiative.

Just last month, he stated that xAI was “creating a multi-agent AI software company, where Grok spawns hundreds of specialized coding and image/video generation/understanding agents all working together and then emulates humans interacting with the software in virtual machines until the result is excellent.”

At the time, Musk stated that “This is a macro challenge and a hard problem with stiff competition,” hinting at the venture’s “Macrohard” moniker. A few years ago, Musk also posted “Macrohard >> Microsoft” on X. 

Advertisement

Powered by xAI and Colossus

Macrohard appears to be closely linked to xAI’s Colossus 2 supercomputer project in Memphis. Musk has confirmed plans to acquire millions of Nvidia GPUs, joining rivals such as OpenAI and Meta in a high-stakes race for AI computing power. Colossus is already one of the most powerful supercomputer clusters in the world, and it is still being expanded.

xAI is only a couple of years old, having been founded in March 2023. During its Engineering Open House event in San Francisco, Elon Musk highlighted that the company’s speed will be its primary competitive edge. “No SR-71 Blackbird was ever shot down and it only had one strategy: to accelerate,” Musk said.

Continue Reading

Elon Musk

Elon Musk confirms he’s still in wartime CEO mode

He is still locked in.

Published

on

Wcamp9, CC BY 4.0 , via Wikimedia Commons

Elon Musk tends to use social media platform X as his personal platform to express himself, so much so that critics tend to allege that the CEO is no longer serious about his numerous companies. 

As per Musk, he is still very much in wartime CEO mode, despite all the jokes and fun posts about Ani on X. 

Elon Musk leads several prolific companies, much more than the average CEO. And while Tesla is the only publicly traded entity that he currently leads, Musk is so visible that everyone across the internet pretty much has a strong opinion of him one way or another. For his longtime supporters and followers, however, what truly matters is if Musk is locked in.

Considering that Elon Musk’s feed on X has recently been filled with AI imagery, a good portion of which involve AI-rendered women, some X users have expressed concerns that the CEO may be losing focus once more. Musk responded to one such user by highlighting his very busy schedule and his numerous active projects. 

Needless to say, Elon Musk is still locked in. He is still in “wartime CEO” mode.

Advertisement

As per the CEO, even his recent AI posts about AI are “part of a broader vision and strategy.” He also highlighted that SpaceX’s Starship Flight 10 is launching in a few days, xAI’s Grok 5 is starting its training next month, and Tesla’s Autopilot V14 is also coming next month. As per Musk, “long-term strategy is compelling.”

Elon Musk’s comments are quite accurate. While he may seem to spend all his time on X, after all, he is very much still neck-deep in all his companies’ projects. There is a reason why Musk became known as a visionary, and a lot of it is because he really is intimately involved in all of his companies’ projects. 

Continue Reading

Trending