

News
A SpaceX surprise: Falcon Heavy booster landing to smash distance record
In an unexpected last-second change, SpaceX has moved Falcon Heavy Flight 3’s center core landing on drone ship Of Course I Still Love You (OCISLY) from 40 km to more than 1240 km (770 mi) off the coast of Florida.
Drone ship OCISLY is already being towed to the landing site, necessary due to the sheer distance that needs to be covered at a leisurely towing pace. The current record for distance traveled during booster recovery was set at ~970 km by Falcon Heavy center core B1055 in April 2019. If successful, Falcon Heavy center core B1057 will smash that record by almost 30% after sending two dozen spacecraft on their way to orbit. Falcon Heavy Flight 3 is scheduled to lift off in support of the Department of Defense’s Space Test Program 2 (STP-2) mission no earlier than 11:30 pm ET (03:30 UTC), June 24th. A routine static fire test at Pad 39A will (hopefully) set the stage for launch on Wednesday, June 19th.
This comes as a significant surprise for several reasons. First and foremost, the difference between a center core landing 40 km or 1300 km from the launch site is immense. For Falcon Heavy, the center core shuts down and separates from the rest of the rocket as much as a minute after the rocket’s two side boosters, potentially doubling the booster’s relative velocity at separation.
That extra minute of acceleration means that the center core can easily be 50-100+ km downrange at the point of separation. In other words, landing 40 km offshore aboard drone ship OCISLY would be roughly akin to a full boostback burn, meaning that the center core would need to nullify all of its substantial downrange velocity, turn around, and fly ~50-100 km back towards the launch site. Being able to perform such an aggressive maneuver would indicate that Falcon Heavy’s boost stage has a huge amount of propellant (delta V) remaining after completing its role in the launch.
To have STP-2’s center core recovery moved from 40 km to 1240 km thus indicates an absolutely massive change in the rocket’s mission plan and launch trajectory. For reference, Falcon Heavy Flight 2’s Block 5 center core (B1055) set SpaceX’s current record for recovery distance (970 km/600 mi) after launching Arabsat 6A – a massive ~6500 kg (14,300 lb) satellite – to a spectacularly high transfer orbit of >90,000 km (56,000 mi).
Why so spicy?
There are three obvious possibilities that might help explain why the STP-2 mission has abruptly indicated that it will require SpaceX’s most energetic booster recovery yet.
1. STP-2 is carrying at least 1-2 metric tons worth of mystery payload(s)
This is highly unlikely. The USAF SMC has already released a SpaceX photo showing the late stages of the STP-2 payload stack’s encapsulation inside Falcon Heavy’s payload fairing. Short of an elaborate faked encapsulation followed by the installation of additional mysterious spacecraft or some extremely dense hardware hidden inside, it’s safe to say that the STP-2 payload stack weighs what the USAF says it weighs, which is to say not nearly heavy enough to warrant a record-smashing booster recovery given the known orbital destinations.
The USAF further confirmed that there is no ballast on the stack, removing the possibility of a lead weight or steel boilerplate meant to artificially push Falcon Heavy to its limits.
2. STP-2’s already-challenging Falcon upper stage mission profile is even more exotic than described
Per official mission overviews, it’s already clear that STP-2 could be the most challenging launch ever attempted for SpaceX’s orbital Falcon upper stage. According to SpaceX itself, “STP-2…will be among the most challenging launches in SpaceX history, with four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver, and a total mission duration of over six hours.”
While undeniably challenging, it’s not clear why it would require such a high-energy center core recovery. With a payload mass of just ~3700 kg, Falcon 9 has launched much larger payloads to (relatively) higher orbits, but this fails to account for the added challenge of long coasts and multiple different orbits. Also of note, the above graph (courtesy of a years-old USAF document) appears to disagree with SpaceX’s description of “four… upper-stage burns”, instead showing five burns (red spikes).
More likely than not, OCISLY’s ~1200-kilometer move can be explained largely by the reintroduction of what the above graph describes as the Falcon upper stage’s “disposal burn”, likely referring to a deorbit burn. On top of the delta V already required for the first four burns, it isn’t out of the question that an additional coast and deorbit burn from 6000 km (3700 mi) would push the recovery equation in favor of attempting to incinerate center core B1057.
3. USAF/DoD conservatism strikes again?
The last plausible explanation for this radical shift is that the US Air Force/Department of Defense (DoD) has decided last-second that they want more margins on top of their already-overflowing safety margins, quite literally pushing B1057 to the edge of its performance envelope to mitigate low-probability failure modes. This has been done to an even more extreme extent with the US Air Force’s recent GPS III SV01 launch, in which SpaceX was forced to expend a new Falcon 9 Block 5 booster to provide the extreme safety margins the USAF desired.
According to the USAF, the STP-2 mission – including launch costs – represents as much as $750M, coincidentally similar to the estimated cost of the GPS III SV01 satellite and an expendable Falcon 9 rocket. As such, it’s not out of the question that a similar level of paranoia/conservatism is in play for STP-2.
Numbers 2 and 3 are equally plausible explanations for this last-second booster recovery shift. Given the US military’s active involvement, it’s more likely than not that no explanations will be offered. Regardless, this surprise development is bound to result in a truly spectacular recovery attempt for SpaceX’s second Block 5 center core and will likely involve breaking several still-fresh records in the process.
Falcon Heavy Flight 3 is in the middle of rolling out to SpaceX’s Kennedy Space Center Pad 39A launch facilities for a routine pre-launch static fire test, scheduled to occur no earlier than 12:30 pm ET (16:30 UTC), June 19th. If all goes well, SpaceX should be on track for its first STP-2 launch attempt at 11:30 pm ET (03:30 UTC), June 24th.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla to launch in India in July with vehicles already arriving: report
Tesla is finally making serious moves toward launching in India, with showrooms opening in July, a report claims.

Tesla is finally bringing its business to India, a new report indicates, as the company is already shipping vehicles from China to the market where it has attempted to launch business for several years.
We first heard of Tesla planning to launch in India about a decade ago when CEO Elon Musk and Indian Prime Minister Narendra Modi met in California at the Fremont Factory in 2015.
Over the years, the two have hinted that the automaker would eventually land in India, but issues with import duties have delayed Tesla’s attempts.
Now, there seems to be some serious movement in Tesla’s plans, as it has reportedly shipped the first batch of vehicles from China to India, according to Bloomberg. The outlet says these are Model Y Rear-Wheel-Drive configurations.
Tesla is also planning for other parts of the launch, like preparing for Supercharging, aftermarket parts and merchandise purchasing for vehicle owners and fans, and spare parts from various regions, including the United States, China, and the Netherlands.
The company and the Indian government must have come to some sort of agreement that was catalyzed by Musk and Modi’s meeting in February in the U.S.
It is a long time coming, and it now gives Tesla access to an incredibly vast market in India, where a very small percentage of 2024’s total automotive sales were comprised of electric vehicles.
Another interesting tidbit about the launch is that the vehicles will be coming from Gigafactory Shanghai and not Gigafactory Berlin as previously thought. Reports from other publications, like Reuters, indicated the German production facility was building vehicles for India early last year.
India has a very strict policy that favors domestic manufacturing, which is why the import duties were so high for foreign automakers looking to bring their product into the market. These duties were reduced from 110 percent to just 15 percent, as long as companies aim to invest in India and meet certain investment and sales targets.
News
SpaceX and Elon Musk share insights on Starship Ship 36’s RUD
Starship Ship 36 experienced a Rapid Unscheduled Disassembly during a static fire attempt.

Elon Musk and SpaceX provided an explanation for the Rapid Unscheduled Disassembly (RUD) of Starship Ship 36 on Wednesday. As per Musk, preliminary data suggests that a nitrogen composite overwrapped pressure vessel (COPV) in the vehicle’s payload bay failed below its proof pressure.
On Wednesday evening, Ship 36 experienced a RUD during a static fire attempt. Videos of the incident that were shared online showed Starship Ship 36 exploding into a massive fireball at its launchpad in Starbase, Texas. Images taken in the aftermath of the explosion showed significant damage to the plumbing in the area. The site’s pad structure was also destroyed.
Elon Musk shared some information immediately after the incident. In a response to a post from space enthusiast @Erdayastronaut, Musk stated that “Preliminary data suggests that a nitrogen COPV in the payload bay failed below its proof pressure.”
Musk also noted that, “If further investigation confirms that this is what happened, it is the first time ever for this design.”
SpaceX provided more insight into the incident in a post on its official website.
“After completing a single-engine static fire earlier this week, the vehicle was in the process of loading cryogenic propellant for a six-engine static fire when a sudden energetic event resulted in the complete loss of Starship and damage to the immediate area surrounding the stand.
“The explosion ignited several fires at the test site, which remains clear of personnel and will be assessed once it has been determined to be safe to approach. Individuals should not attempt to approach the area while safing operations continue,” SpaceX wrote in its post.
SpaceX highlighted that despite Starship Ship 36’s RUD, the incident will not result in any hazards to the surrounding communities in the Rio Grande Valley. And in a post on X, SpaceX also confirmed that everyone in the Starship team was safe and accounted for after Ship 36’s explosion.
While Ship 36’s RUD is a speed bump for the Starship program, SpaceX is a company that is known to grow stronger with every adversity. Thus, it would not be surprising if SpaceX implemented numerous improvements to Starship after this incident–improvements that would make the vehicle more reliable and safer than before.
News
Tesla has started rolling out initial round of Robotaxi invites
Tesla is putting safety above all in its initial Robotaxi rollout.

Tesla has started rolling out an initial round of invites for its upcoming Robotaxi service in Austin, Texas.
Screenshots shared by several Tesla community members who received the invites provided a quick overview of the autonomous ride-hailing service.
As noted in a techAU report, the initial round of Robotaxi service invites has gone to longtime Tesla owners and active members of the EV community. These include owners such as @SawyerMerritt, @BLKMDL3, @WholeMarsBlog, @ItsKimJava, and @HerbertOng, all of whom shared screenshots of the invitation that Tesla has sent about the upcoming service.
You’re Invited to Early Access of Tesla Robotaxi!
The Future is Now! You’re invited to Early Access of Tesla’s Robotaxi service in Austin, TX!
As an Early Access rider, you can be among the first to use our new Robotaxi App and experience an autonomous ride within our geofenced area in Austin. Through this exclusive preview, you’ll have the opportunity to provide valuable feedback on our Robotaxi service.
Based on Tesla’s message, it appears that participation in the service would be strictly invite-only for now. Participants must also download Tesla’s dedicated Robotaxi App to hail a ride. Rides can also be requested and initiated to and from any location within a geofenced area of Austin.
The robotaxi service will be available from 6:00 AM to 12:00 AM, seven days a week, though these hours may change depending on factors such as inclement weather. Interestingly enough, Tesla is inviting the first participants of the Robotaxi program to share photos and videos of their experience with the service.
While the vehicles themselves are autonomous and would operate without human input, the Robotaxis would still be accompanied by a Tesla staff member to monitor the vehicle. This strategy suggests that Tesla is really putting safety above all in its initial Robotaxi rollout.
-
News2 weeks ago
I took a Tesla Cybertruck weekend Demo Drive – Here’s what I learned
-
Elon Musk2 weeks ago
Tesla tops Cathie Wood’s stock picks, predicts $2,600 surge
-
News1 week ago
First Tesla driverless robotaxi spotted in the wild in Austin, TX
-
Elon Musk2 weeks ago
X account with 184 followers inadvertently saves US space program amid Musk-Trump row
-
News2 weeks ago
Tesla announces massive new achievement with 8 million cars produced
-
Elon Musk1 week ago
Tesla CEO Elon Musk reveals new details about Robotaxi rollout
-
Elon Musk1 week ago
Tesla sues former Optimus engineer for stealing trade secrets
-
News1 week ago
SpaceX produces its 10 millionth Starlink kit