The user experience of Tesla’s electric cars is centered mostly on the vehicles’ large, high-resolution displays. Coupled with custom software that provides a quick, smartphone-like experience, Tesla’s screens in its vehicles are already among the best in the auto industry. But in the spirit of the company’s habit of constant innovation, it appears that Tesla is looking to improve the quality of its displays even more.
A recently published patent from the electric car maker, titled “Holographic Decorated Glass for Screen Color Matching,” outlines a way for the electric car maker to improve the viewing angles of its vehicles’ displays. In the patent, Tesla notes that “because display screens typically have a periodic micro-structure (e.g., a pixelated structure), the color of the display screen may be dependent on the angle at which a viewer is looking at the display screen.” This results in viewing angles that have significant room for improvement, even among high-quality screens.
“The non-displaying portions of the device may be unable to match this angular color dependence of the display screen, resulting in a readily visible boundary between the display screen and the non-displaying portions of the device. Accordingly, there is a need for better color integration between the displaying portions of a device and the non-displaying portions of the device,” Tesla wrote.

To address this, Tesla opted to utilize a pigmented frame and index match glue to coat its vehicles’ screens, as well as a holographic glass panel. By adopting these techniques, Tesla expects to provide its vehicles with a screen that can offer optimal viewing angles for all passengers. This is especially useful when paired with the company’s entertainment features such as Tesla Theater or Tesla Arcade, which are accessible when a vehicle is on Park.
Tesla describes its use of index match glue and holographic glass panels as follows.
“Index match glue 206 may change the perceived color and appearance of display 204 to match the color and appearance of surrounding frame 202 within a small range of viewing angles. For example, index match glue 206 may change the perceived color and appearance of display 204 to match the color and appearance of frame 202 within a range of viewing angles approximately normal to the surface of display 204. However, due to the angular dependence of the perceived color and appearance of display 204 (due to display 204 having a holographic structure resulting from the pixels of display 204), index match glue 206 may be unable to change the perceived color and appearance of display 204 to match the color and appearance of frame 202 within a broad range of viewing angles so that the boundary between frame 202 and display 204 is invisible to a viewer. Accordingly, with display 204 coated with index match glue 206 surrounded by frame 202, the boundary between frame 202 and display 204 may still be readily visible at certain viewing angles.”
“The directionality of the periodic structure of holographic film 402 may approximate or match the directionality of the periodic structure of display 406. For example, if display 406 includes a plurality of periodic features (e.g., pixels) oriented in a first direction (e.g., rectangles, triangles, or the like having a common orientation), holographic film 402 may include a plurality of periodic features oriented in the first direction. FIG. 5 shows exemplary system 500 in which the visibility of a boundary between display 504 and a surrounding frame including a holographic structure (here holographic glass panel 502) may be reduced or eliminated over a broad range of viewing angles. In exemplary system 500, a periodic structure is formed on holographic glass panel 502 directly. For example, laser etching on holographic glass panel 502 may produce the periodic structure responsible for the holographic effect of holographic glass panel 502. Holographic glass panel 502 may include holographic structures formed in a variety of other ways, including ablation, etching, deposition processes, and the like.”
The full text of Tesla’s “Holographic Decorated Glass for Screen Color Matching” patent could be viewed here.
A color-matched display with optimal viewing angles might be a rather minor aspect of a vehicle, but for connected cars such as Teslas, it is these little things that make a difference in user experience. A car that boasts some of the most advanced automotive tech available in the auto segment today, after all, deserves a screen that is on par with some of the best mobile devices on the market.
Tesla’s display design outlined in its recently published patent can come in handy as well, particularly as the electric car maker introduces more updates to its fleet of vehicles. Among these is a “Fade Mode,” which Elon Musk has hinted at in the past. While responding to a Twitter follower last year, Musk responded positively to the suggestion of adding an option that allows drivers to dim their vehicles’ display while a car is in motion. This, together with features like V10’s Joe Mode, could help make long trips in Tesla’s electric vehicles much more convenient for passengers.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
