Connect with us

News

Tesla’s novel ‘holographic glass’ patent makes way for better vehicle displays

(Photo: Andres GE)

Published

on

The user experience of Tesla’s electric cars is centered mostly on the vehicles’ large, high-resolution displays. Coupled with custom software that provides a quick, smartphone-like experience, Tesla’s screens in its vehicles are already among the best in the auto industry. But in the spirit of the company’s habit of constant innovation, it appears that Tesla is looking to improve the quality of its displays even more. 

A recently published patent from the electric car maker, titled “Holographic Decorated Glass for Screen Color Matching,” outlines a way for the electric car maker to improve the viewing angles of its vehicles’ displays. In the patent, Tesla notes that “because display screens typically have a periodic micro-structure (e.g., a pixelated structure), the color of the display screen may be dependent on the angle at which a viewer is looking at the display screen.” This results in viewing angles that have significant room for improvement, even among high-quality screens. 

“The non-displaying portions of the device may be unable to match this angular color dependence of the display screen, resulting in a readily visible boundary between the display screen and the non-displaying portions of the device. Accordingly, there is a need for better color integration between the displaying portions of a device and the non-displaying portions of the device,” Tesla wrote. 

An illustration depicting a system where a display is surrounded by a holographic glass panel. (Credit: US Patent Office)

To address this, Tesla opted to utilize a pigmented frame and index match glue to coat its vehicles’ screens, as well as a holographic glass panel. By adopting these techniques, Tesla expects to provide its vehicles with a screen that can offer optimal viewing angles for all passengers. This is especially useful when paired with the company’s entertainment features such as Tesla Theater or Tesla Arcade, which are accessible when a vehicle is on Park. 

Tesla describes its use of index match glue and holographic glass panels as follows. 

“Index match glue 206 may change the perceived color and appearance of display 204 to match the color and appearance of surrounding frame 202 within a small range of viewing angles. For example, index match glue 206 may change the perceived color and appearance of display 204 to match the color and appearance of frame 202 within a range of viewing angles approximately normal to the surface of display 204. However, due to the angular dependence of the perceived color and appearance of display 204 (due to display 204 having a holographic structure resulting from the pixels of display 204), index match glue 206 may be unable to change the perceived color and appearance of display 204 to match the color and appearance of frame 202 within a broad range of viewing angles so that the boundary between frame 202 and display 204 is invisible to a viewer. Accordingly, with display 204 coated with index match glue 206 surrounded by frame 202, the boundary between frame 202 and display 204 may still be readily visible at certain viewing angles.”

Advertisement
-->

“The directionality of the periodic structure of holographic film 402 may approximate or match the directionality of the periodic structure of display 406. For example, if display 406 includes a plurality of periodic features (e.g., pixels) oriented in a first direction (e.g., rectangles, triangles, or the like having a common orientation), holographic film 402 may include a plurality of periodic features oriented in the first direction. FIG. 5 shows exemplary system 500 in which the visibility of a boundary between display 504 and a surrounding frame including a holographic structure (here holographic glass panel 502) may be reduced or eliminated over a broad range of viewing angles. In exemplary system 500, a periodic structure is formed on holographic glass panel 502 directly. For example, laser etching on holographic glass panel 502 may produce the periodic structure responsible for the holographic effect of holographic glass panel 502. Holographic glass panel 502 may include holographic structures formed in a variety of other ways, including ablation, etching, deposition processes, and the like.”

The full text of Tesla’s “Holographic Decorated Glass for Screen Color Matching” patent could be viewed here

A color-matched display with optimal viewing angles might be a rather minor aspect of a vehicle, but for connected cars such as Teslas, it is these little things that make a difference in user experience. A car that boasts some of the most advanced automotive tech available in the auto segment today, after all, deserves a screen that is on par with some of the best mobile devices on the market. 

Tesla’s display design outlined in its recently published patent can come in handy as well, particularly as the electric car maker introduces more updates to its fleet of vehicles. Among these is a “Fade Mode,” which Elon Musk has hinted at in the past. While responding to a Twitter follower last year, Musk responded positively to the suggestion of adding an option that allows drivers to dim their vehicles’ display while a car is in motion. This, together with features like V10’s Joe Mode, could help make long trips in Tesla’s electric vehicles much more convenient for passengers.

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading