News
Lithium produced for Tesla’s batteries is less polluting than 31 cups of coffee: researcher
There are many criticisms of electric vehicles like Teslas, and one of them involves the notion that EVs require massive amounts of water to produce the lithium in their batteries. This idea, according to Dr. Maximilian Fichtner, who serves as the Director at the Helmholtz Institute for Electrochemical Energy Storage in Germany, is not accurate at all.
In a recent conversation with Tagesspiegel Background, the battery researcher stated that the production of electric car batteries is not as extreme as what EV critics would suggest. To produce the lithium needed for a 64 kWh battery pack, for example, Fichtner stated that about 3840 liters of water are evaporated according to usual calculation methods. This is roughly comparable to the production of 250 grams of beef, 30 cups of coffee, or half a pair of jeans, according to the researcher.
Explaining further, Fichtner stated that even before electric cars like Teslas became popular, lithium was already being used in large quantities in many industrial and chemical processes. Lithium-ion batteries are also widely used in mobile devices, which are universally accepted today. “I’m always surprised that the public never talks about lithium in laptops or mobile phones – but suddenly it’s a problem with the e-car,” the battery researcher said.
But the water consumption involved in the production of lithium for electric car batteries is just the tip of the iceberg. Fichtner estimates that a 64 kWh pack is likely in the middle of various variants of the Tesla Model 3 sedan, whose long-range versions can easily go beyond 450 km (280 miles) of range per charge. If one were to infer that an electric car battery pack can remain optimal with 2,000 full charging cycles, this could equate to a total distance of about 900,000 km. And that’s with estimates on existing battery technology.
With this in mind, it appears that Tesla’s lithium-ion batteries are actually less polluting than otherwise everyday items such as steak or the aforementioned 30 cups of coffee, since they have the potential to remain in service for a very long time. About 2,000 charging cycles, after all, would likely equate to years of average EV use.
Companies like Tesla are hard at work in improving their battery cells. This much is hinted at by Tesla executives such as CEO Elon Musk and President of Automotive Jerome Guillen, both of whom have noted that Tesla’s batteries are always evolving. Fichtner expects electric car batteries to have an average lifespan of 3,000 cycles by 2025, which would make EV batteries even more environmentally-friendly.
In his recent conversation with the publication, the researcher discussed one of the most sensitive topics surrounding battery production: cobalt. Cobalt has developed a very negative reputation due to the abhorrent conditions in cobalt mines in areas such as Congo. Fortunately, many automakers have since pledged to source the cobalt used in their EVs from areas that meet stringent standards. Tesla does this and more, with the electric car maker attempting to develop cobalt-free batteries in the near future.
For now, electric car makers are in a game of cobalt reduction, and in this sense, Tesla has a notable lead. The batteries used in Volkswagen’s well-received ID.3 hatchback, for example, contain about 12-14% cobalt. The Tesla Model 3, on the other hand, only contains about 2.9% cobalt as of 2018. Fichtner predicts that if things go well, cobalt-free batteries could enter the market as early as 2025.
Maximilian Fichtner received his Ph.D. in Chemistry/Surface Science with distinction and the Hermann Billing Award for his thesis in 1992. He currently serves as the professor for Solid State Chemistry at the Ulm University and Executive Director of the Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU). He has also worked in collaboration with the German ministries of Economy and Research and Education, and has served as the Chair of the 1st International Symposium on Magnesium Batteries in 2016.
Elon Musk
Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Elon and Ashok’s firsthand Robotaxi insights
Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.”
Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.
Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”
Towards Unsupervised operations
During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.
Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.