Connect with us

News

Tesla turns up vehicle safety with clever ‘crash can’ patent

Tesla Model 3 undergoes crash testing. (Credit: ANCAP Safety Ratings)

Published

on

Tesla’s electric cars are already among the safest vehicles on the road today with their impressive safety ratings. But even the best cars still have room for improvement, and one can count on Tesla to be the manufacturer that will do what it can to make its already-safe vehicles even safer. An example of this could be found in a recently published patent that describes a “crash can” that can help protect occupants better in the event of a collision.

The patent, titled “ADVANCED THIN-WALLED STRUCTURE FOR ENHANCED CRASH PERFORMANCE” describes a specific design for a “crash can,” a thin-walled metal structure that is built into the crash zones of a vehicle. These metal structures are built to absorb the energy of an impact, and are designed to deform in a stable manner during events such as a crash. Crash cans are typically a square, single-cell tube directly mounted to the front of the frame of the vehicle. 

Tesla’s crash can patent takes the same concept but raises it up a couple of notches higher. Instead of using a simple square, single-cell tube, Tesla’s patent describes a “multi-cell structure that includes at least four hollow cuboids.” The four walls of the hollow cuboids meet at 90-degree angles and at least two of the cuboids share a wall. Tesla describes its design in the section below. 

“In some embodiments a crash can for a vehicle includes a multi-cell structure that includes a hollow cuboid and four hollow isosceles trapezoidal prisms. The hollow cuboid has four walls and the four hollow isosceles trapezoidal prisms each have a long base, a short base, and two legs. The four hollow isosceles trapezoidal prisms are arranged around the hollow cuboid such that the long base of each hollow isosceles trapezoidal prism shares one of the walls of the hollow cuboid.”

Illustrations of Tesla’s “crash can” patent. (Credit: US Patent Office)

Advertisement
-->

This updated design, while seemingly a minor change, actually improves the safety of a vehicle during a crash. According to Tesla, the crash can design in its recently-published patent provides a more stable deformation process. This increases the amount of energy that can be absorbed in a collision. 

“One advantage of the various embodiments of the crash cans disclosed herein is that the multi-cell structure of the crash cans provides a more stable form of plastic deformation when the crash can is subject to the force of a collision relative to a single cell (tube) structure. Further, the various geometries described herein may further provide more stable plastic deformation relative to conventional geometries. As described herein, plastic deformation is the process of absorbing energy when the crash can is subject to a collision. Various exemplary crash cans provided herein increases plastic deformation, and thus the amount of energy absorbed, by increasing the probability that the crash cans buckle in a progressive manner. Thus, the multi-cell structure of the exemplary crash cans increases the probability that when subjected to axial force the crash cans will buckle in a stable top-down, progressive folding of the structure.

“Increasing plastic deformation in this manner grants the multi-cell crash can several advantages. For example, increasing plastic deformation in turn increases the amount of energy that will be absorbed during a collision, resulting in lower deceleration for the occupant(s) and critical components of a vehicle involved in a collision. This, in turn, results in an overall safer experience for the occupant(s) and critical components, providing for a lower chance of injury or damage. Additionally, increasing the probability that the multi-cell crash can buckles in a stable manner increases the predictability of how the crash can will react when subject to a collision, which in turn increases the predictability of how the rest of the vehicle will react. This allows for greater predictability of what an occupant will experience and allows for more precise planning on how to keep the occupant safe.”

The full text of Tesla’s novel “crash can” patent could be accessed here

Among the carmakers in the auto segment today, Tesla is arguably the most obsessive when it comes to its vehicles’ safety. Each one of Tesla’s electric cars has performed well in crash tests, with the Model X SUV proving to be near-impossible to topple, and the Model 3 acing the safety tests of the NHTSA, Euro NCAP, ANCAP, and even the IIHS. With improvements such as those described in its recently-published “crash can” patent, Tesla’s electric cars today, as well as its upcoming vehicles, could prove even safer.

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading