News
Tesla Model Y’s front impact structure opens doors to a stellar safety rating
Sandy Munro’s newest video of his Model Y teardown series included a breakdown of the electric crossover’s revised front impact structure. Most notably, Munro’s analysis of the improved impact structure on the Model Y could make Tesla’s reputation for producing some of the safest cars on the market even more solidified, as the thicker and sturdier elements in the all-electric crossover could pave the way for another stellar safety rating.
When Elon Musk unveiled the Model Y in March 2019, he stated that “We expect it will be the safest midsize SUV in the world by far,” he said. The numerous safety improvements that have been recognized by Munro are vital indicators that Musk may be right, and the Model Y could prove itself to be one of, if not the safest car in its class in the market.
As the Model Y’s performance features have already been broken down by many, the safety features are among the more elusive details of the vehicle. Munro notes the Model Y contains several improved features compared to the Model 3, which already holds a five-star safety rating. The first described addition to the Model Y’s safety “system” is the increased thickness of the sheet metal at the front of the rail, as seen in the image below.

This addition will improve the front-end collision system of the vehicle, which was already impressive on the Model 3. However, Tesla is dealing with a more massive vehicle that maintains a different body structure, and beefing up the parts in the front end of the car was one of the ways the company could make the Model Y safer.
Next, Munro points out Tesla’s revisions to the front cradle. The cradle is a subframe structural component that is separate from the larger and “primary” chassis on a vehicle. It is usually used to carry engines, drivetrains, suspension systems, or in the case of the Model Y, its front end impact structure.
The Model Y’s front cradle holds the front impact structure as the two are “tied” together, Munro states. This cradle mounting points to the vehicle’s mainframe extend well into the vehicle’s Small Overlap Rigid Barrier, or SORB zone. The more rigid, dense, sturdy, and durable cradle and front rail increase the safety of the vehicle if it collides with a pole, tree, or another car. These are among some of the most dangerous types of accidents, according to the IIHS.

Tesla also added what Munro refers to as a “tusk” just behind the front quarter panels of the Model Y. The tusk is designed to collapse into the vehicle’s longitudinals. This energy will then be transferred to the now-thicker front end rail in the event of a front side collision, diverting energy from a violent accident away from the passenger cabin. “The tusk will fold in, and it’s going to smash into the longitudinals, and probably other things. That’s going to start to put the energy from the event into the structure here (referring to the front rail), that is uber-strong,” Munro says.
Munro says the structure is entirely different than what Tesla used on the Model 3, citing the new build seems to be exceptionally safe and improved. Interestingly enough, the Model 3 was already recognized as one of the safest vehicles on the road and has received top marks from the Insurance Institute for Highway Safety (IIHS) and Euro NCAP, among others. Despite the impressive and proven safety of the Model 3, it appears that Tesla wanted to do even better. The Model Y is a tangible representation of it.
Watch Sandy Munro breakdown Tesla Model Y’s front end impact system in the video below.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.