News
Tesla points to better range and efficiency with compact power steering patent
Tesla’s electric cars are already among the most efficient vehicles on the market, and this is shown by the immense gap between the range and efficiency of the company’s vehicles compared to their competitors from veteran automakers. Part of the reason behind this is Tesla’s continued improvements in its vehicles, which are rolled out and adopted as soon as they are refined and ready.
One of these improvements appears to have been teased in a recently-published patent application. Simply titled “Steering System for a Vehicle,” the document describes a smart, novel way of designing a power steering system that is more compact and less power-hungry. In the patent’s background, Tesla remarked that conventional power steering systems, which are usually hydraulically operated, are mostly bulky and space-consuming.
This is due to power steering systems utilizing a number of components that include cylinders, pumps, hoses, and control valves, to name a few. Hydraulic power steering systems also have complex designs, which add cost to a vehicle. Lastly, conventional power steering systems generally require a large amount of power to function. With this in mind, Tesla argues that there is a need for a new power steering system that is simpler, smaller, and more power-efficient.

Tesla’s novel power steering design involves fewer parts than the conventional system used in most vehicles. The electric car maker describes the design in its patent in the description below.
“The steering system includes a drive motor having a motor shaft. The steering system also includes a first gear reduction stage for receiving a first rotational input from the motor shaft and providing a first rotational output. A first gear meshes with a second gear of the first gear reduction stage via a helical gear mesh. The steering system further includes a second gear reduction stage for receiving the first rotational output from the first gear reduction stage and providing a second rotational output.
“The second gear reduction stage may include at least one of a strain wave gearing, a worm drive, and a planetary gearing. In case the second reduction stage is a strain wave gearing, the second gear reduction stage includes an ovular coupler, a flexible coupling, an outer spline, and a plurality of bearing members disposed between the ovular coupler and the flexible coupling. The steering system includes an output shaft for receiving the second rotational output from the second gear reduction stage.”
Tesla notes that its smaller, power-saving steering system, apart from being more power-efficient and compact, also includes several failsafes, which could, in turn, increase a vehicle’s safety. The company’s patent mentions “sacrificial or failsafe components,” which are designed to safeguard a vehicle’s sensitive components during the event of a breakdown. Such a design will likely contribute to Tesla’s electric cars and their already-stellar safety ratings.

“In some embodiments, steering system 102 has been shown to provide a 10% improvement over a hydrolytic steering system. Additionally, steering system 102 is a compact unit that consumes lesser space as compared to other steering systems that are commercially available in markets. Further, steering system 102 does not require large amount of additional power for operation. FIG. 6 illustrates a failure mode of steering system 102 in which one or more bearing members 244 of steering system 102 fail. Bearing members 244 of steering system 102 are designed to withstand high loads so that they do not fail during normal vehicle operation. However, bearing members 244 may be designed to withstand only a predetermined threshold of load. As a result, bearing members 244 fail when they are loaded beyond the predetermined threshold.
“For example, a bearing member 258 may eventually fail along a shear plane 260 when loaded beyond the predetermined threshold. Alternatively, bearing members 244 may undergo a bending failure, or any other type of failure. In such a situation, one bearing member 244 is a sacrificial or failsafe components, thereby safeguarding other components of vehicle, for example, drive motor 204 or an engine, against breakdown or seizing. More particularly, the one bearing members 244 fails, ovular coupler 238 locks and rotates with flexible coupling 240. Thus, steering system 102 can still be operated to allow vehicle to be driven for a certain distance and parked at an appropriate location. Bearing member 244 fails according to a sheer mechanism or another failure mechanism. Further, failed bearing member 258 can be replaced and vehicle can be reinstated without incurring any additional losses.”
It remains to be seen if Tesla’s compact power steering system will be adopted for the company’s upcoming vehicles. That being said, such a system is a perfect match for EVs such as the Tesla Semi, the Tesla Pickup Truck, and the Model S and X Plaid Powertrain variants. These are all large vehicles, and their success in the market will likely be determined in no small part by their range and efficiency. In this light, every single innovation that could optimize these vehicles’ efficiency will most definitely be appreciated. After all, the less power is consumed by subsystems such as a vehicle’s power steering unit, the more power there is to turn an electric car’s wheels.
The full text of Tesla’s compact, efficient power steering system could be accessed here.
News
Tesla Cybercab tests are going on overdrive with production-ready units
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.
Recent Cybercab sightings
Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.
The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.
Production design all but finalized?
Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.
There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious.
News
Tesla gets a win in Sweden as union withdraws potentially “illegal” blockade
As per recent reports, the Vision union’s planned anti-Tesla action might have been illegal.
Swedish union Vision has withdrawn its sympathy blockade against Tesla’s planned service center and showroom in Kalmar. As per recent reports, the Vision union’s planned anti-Tesla action might have been illegal.
Vision’s decision to pull the blockade
Vision announced the blockade in early December, stating that it was targeting the administrative handling of Tesla’s facility permits in Kalmar municipality. The sympathy measure was expected to start Monday, but was formally withdrawn via documents sent to the Mediation Institute and Kalmar Municipality last week.
As noted in a Daggers Arbete report, plans for the strike were ultimately pulled after employer group SKR highlighted potential illegality under the Public Employment Act. Vision stressed its continued backing for the Swedish labor model, though Deputy negotiation manager Oskar Pettersson explained that the Vision union and IF Metall made the decision to cancel the planned strike together.
“We will not continue to challenge the regulations,” Petterson said. “The objection was of a technical nature. We made the assessment together with IF Metall that we were not in a position to challenge the legal assessment of whether we could take this particular action against Tesla. Therefore, we chose to revoke the notice itself.”
The SKR’s warning
Petterson also stated that SKR’s technical objection to the Vision union’s planned anti-Tesla strike framed the protest as an unauthorized act. “It was a legal assessment of the situation. Both for us and for IF Metall, it is important to be clear that we stand for the Swedish model. But we should not continue to challenge the regulations and risk getting judgments that lead nowhere in the application of the regulations,” he said.
Vision ultimately canceled its planned blockade against Tesla on December 9. With Vision’s withdrawal, few obstacles remain for Tesla’s long-planned Kalmar site. A foreign electrical firm completed work this fall, and Tesla’s Careers page currently lists a full-time service manager position based there, signaling an imminent opening.
News
Tesla Semi program Director teases major improvements
Tesla Semi Program Director Dan Priestly teased the major improvements to the all-electric Class 8 truck on Thursday night, following the company’s decision to overhaul the design earlier this year.
Priestley said he drove the Semi on Thursday, and the improvements appear to be welcomed by one of the minds behind the project. “Our customers are going to love it,” he concluded.
Just drove the redesigned Semi. Our customers are going to love it. https://t.co/KZ88sf1CDL
— Dan Priestley (@danWpriestley) December 19, 2025
The small detail does not seem like much, but it is coming from someone who has been involved in the development of the truck from A to Z. Priestley has been involved in the Semi program since November 2015 and has slowly worked his way through the ranks, and currently stands as the Director of the program.
Tesla Semi undergoes major redesign as dedicated factory preps for deliveries
Tesla made some major changes to the Semi design as it announced at the 2025 Annual Shareholder Meeting that it changed the look and design to welcome improvements in efficiency.
Initially, Tesla adopted the blade-like light bar for the Semi, similar to the one that is present on the Model Y Premium and the Cybertruck.
Additionally, there are some slight aesthetic changes to help with efficiency, including a redesigned bumper with improved aero channels, a smaller wraparound windshield, and a smoother roofline for better aero performance.
All of these changes came as the company’s Semi Factory, which is located on Gigafactory Nevada’s property, was finishing up construction in preparation for initial production phases, as Tesla is planning to ramp up manufacturing next year. CEO Elon Musk has said the Semi has attracted “ridiculous demand.”
The Semi has already gathered many large companies that have signed up to buy units, including Frito-Lay and PepsiCo., which have been helping Tesla test the vehicle in a pilot program to test range, efficiency, and other important metrics that will be a major selling point.
Tesla will be the Semi’s first user, though, and the truck will help solve some of the company’s logistics needs in the coming years.