Connect with us

News

Tesla points to better range and efficiency with compact power steering patent

The Tesla Model 3's minimalistic interior. (Credit: Tesla)

Published

on

Tesla’s electric cars are already among the most efficient vehicles on the market, and this is shown by the immense gap between the range and efficiency of the company’s vehicles compared to their competitors from veteran automakers. Part of the reason behind this is Tesla’s continued improvements in its vehicles, which are rolled out and adopted as soon as they are refined and ready. 

One of these improvements appears to have been teased in a recently-published patent application. Simply titled “Steering System for a Vehicle,” the document describes a smart, novel way of designing a power steering system that is more compact and less power-hungry. In the patent’s background, Tesla remarked that conventional power steering systems, which are usually hydraulically operated, are mostly bulky and space-consuming.

This is due to power steering systems utilizing a number of components that include cylinders, pumps, hoses, and control valves, to name a few. Hydraulic power steering systems also have complex designs, which add cost to a vehicle. Lastly, conventional power steering systems generally require a large amount of power to function. With this in mind, Tesla argues that there is a need for a new power steering system that is simpler, smaller, and more power-efficient. 

Illustrations showing different perspective views of Tesla’s steering system patent. (Credit: US Patent Office)

Tesla’s novel power steering design involves fewer parts than the conventional system used in most vehicles. The electric car maker describes the design in its patent in the description below. 

“The steering system includes a drive motor having a motor shaft. The steering system also includes a first gear reduction stage for receiving a first rotational input from the motor shaft and providing a first rotational output. A first gear meshes with a second gear of the first gear reduction stage via a helical gear mesh. The steering system further includes a second gear reduction stage for receiving the first rotational output from the first gear reduction stage and providing a second rotational output. 

“The second gear reduction stage may include at least one of a strain wave gearing, a worm drive, and a planetary gearing. In case the second reduction stage is a strain wave gearing, the second gear reduction stage includes an ovular coupler, a flexible coupling, an outer spline, and a plurality of bearing members disposed between the ovular coupler and the flexible coupling. The steering system includes an output shaft for receiving the second rotational output from the second gear reduction stage.”

Advertisement

Tesla notes that its smaller, power-saving steering system, apart from being more power-efficient and compact, also includes several failsafes, which could, in turn, increase a vehicle’s safety. The company’s patent mentions “sacrificial or failsafe components,” which are designed to safeguard a vehicle’s sensitive components during the event of a breakdown. Such a design will likely contribute to Tesla’s electric cars and their already-stellar safety ratings. 

An illustration of a steering system for a vehicle, according to certain embodiments of Tesla’s patent. (Credit: US Patent Office)

“In some embodiments, steering system 102 has been shown to provide a 10% improvement over a hydrolytic steering system. Additionally, steering system 102 is a compact unit that consumes lesser space as compared to other steering systems that are commercially available in markets. Further, steering system 102 does not require large amount of additional power for operation. FIG. 6 illustrates a failure mode of steering system 102 in which one or more bearing members 244 of steering system 102 fail. Bearing members 244 of steering system 102 are designed to withstand high loads so that they do not fail during normal vehicle operation. However, bearing members 244 may be designed to withstand only a predetermined threshold of load. As a result, bearing members 244 fail when they are loaded beyond the predetermined threshold. 

“For example, a bearing member 258 may eventually fail along a shear plane 260 when loaded beyond the predetermined threshold. Alternatively, bearing members 244 may undergo a bending failure, or any other type of failure. In such a situation, one bearing member 244 is a sacrificial or failsafe components, thereby safeguarding other components of vehicle, for example, drive motor 204 or an engine, against breakdown or seizing. More particularly, the one bearing members 244 fails, ovular coupler 238 locks and rotates with flexible coupling 240. Thus, steering system 102 can still be operated to allow vehicle to be driven for a certain distance and parked at an appropriate location. Bearing member 244 fails according to a sheer mechanism or another failure mechanism. Further, failed bearing member 258 can be replaced and vehicle can be reinstated without incurring any additional losses.”

It remains to be seen if Tesla’s compact power steering system will be adopted for the company’s upcoming vehicles. That being said, such a system is a perfect match for EVs such as the Tesla Semi, the Tesla Pickup Truck, and the Model S and X Plaid Powertrain variants. These are all large vehicles, and their success in the market will likely be determined in no small part by their range and efficiency. In this light, every single innovation that could optimize these vehicles’ efficiency will most definitely be appreciated. After all, the less power is consumed by subsystems such as a vehicle’s power steering unit, the more power there is to turn an electric car’s wheels. 

The full text of Tesla’s compact, efficient power steering system could be accessed here.

Advertisement

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Advertisement

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Advertisement

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Advertisement
Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

Advertisement
  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

Advertisement

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading