News
Volkswagen, a rocky $50B EV bet, and the bid to chase Tesla’s software prowess
Among the old guard of the automotive industry, very few could hold a candle to Volkswagen, which has initiated a $50 billion bet on electric vehicles. The plan, it seemed, was aimed at ensuring that the veteran automaker could catch up to Tesla, a dedicated EV maker that has made a name for itself by releasing vehicles that receive over-the-air updates on a regular basis.
Yet as the first result of Volkswagen’s dedicated EV efforts, the ID.3, rolled off the assembly line, it became clear that releasing software-driven electric cars was not as simple as building the next iteration of the Golf. When the ID.3 was released, the vehicle was incomplete. It could drive, turn corners, and basically do anything that regular cars are expected to do. Software-wise, however, it was nowhere near done. Features that were promised were absent, and promised capabilities such as over-the-air updates were unavailable.

Even the ID.3’s heads-up display, a feature that is not present in rivals like the Model 3, didn’t function. Early users of the vehicle also reported hundreds of software bugs. By June last year, Volkswagen decided to delay the ID.3’s launch and sell the first batch of the cars without full software. The vehicles are expected to receive an update that would provide the ID.3 with its full feature set, but the initiative will require a service visit around February 2021.
As noted in a report from The Wall Street Journal, Volkswagen’s issues with the ID.3 were the result of the veteran automaker not being proficient in software. For years, industry analysts and leaders alike have suggested and peddled the “Tesla Killer” narrative, suggesting that once the big players of the auto industry get serious about electric vehicles, Elon Musk’s EV startup would be completely overrun. As it turned out, building electric cars was not as simple. Just because a company can produce good gas and diesel-powered cars does not mean that they can produce good EVs.
Karsten Michels, a senior engineer for Continental AG, one of the firms which Volkswagen tapped to develop the ID.3’s software, noted that the gravity of the task surrounding the development of custom vehicle software was underestimated. “Maybe we underestimated how much work is involved and how little we could actually rely on existing legacy software,” Michels said.

Peter Rawlinson, CEO of Lucid Motors, expressed his thoughts on the situation. “(Ever since Tesla launched its first car in 2008) there was this feeling that the really serious players are going to come. Now, the Germans have finally come, and they’re not as good as Tesla,” he remarked.
Volkswagen, for its part, seems to be taking the lessons it learned during the ID.3 rollout and is applying it for the release of the ID.4, a crossover SUV that could rival the Tesla Model Y. Herbert Diess, the Chairman of the Board of Management of Volkswagen Group and an executive who has struck a friendship of sorts with Tesla CEO Elon Musk, initiated efforts to overhaul the company’s software strategies. If successful, the ID.4, which will be produced in Europe, China, and the United States, would deliver on the promises set forth by the ID.3.
Ultimately, Volkswagen has learned a notable yet painful lesson during the ramp of the ID.3, the most notable of which is that software is something that legacy automakers still need to work on. Granted, software has been running in gas-powered cars for years, with average vehicles including dozens of parts with chips that are designed to perform specific tasks. EVs, however, require a different type of software, one that is more akin to those used by smartphones today. With electric cars, in-vehicle software becomes the heart of the vehicle, with updates becoming the equivalent of service visits in a gas-powered car. In-vehicle software today is never complete as well, as they must always be open to improvements.
Danny Shapiro, senior director of automotive at Nvidia, related his thoughts on the complexity of in-vehicle software. “The key here is taking this distributed system in the car, dozens if not hundreds of applications, and centralizing everything. This is very complex, especially with a car where the safety level is critical. You can’t just flip a switch and be a software company,” he noted.
Don’t hesitate to contact us for news tips. Just send a message to tips@teslarati.com to give us a heads up
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.