Connect with us
Wolfspeed Wolfspeed

News

New Wolfspeed EV chip factory poised to tackle automotive chip shortage

Credit: Wolfspeed

Published

on

An upcoming EV chip manufacturing plant in Germany is poised to finally tackle the chip shortage that has ravaged automakers worldwide.

If one thing has become eminently clear over the past three years, it is the fact that the supply chains that bring us everything from cars to surgical masks are incredibly delicate and, further, can benefit from numerous points of origin. Perhaps nowhere has this been seen better than in the scramble for automotive computer chips in the wake of COVID-19 across the world in 2020. Now, according to a press release from German chip conglomerate ZF Friedrichshafen (ZF) and American chip maker Wolfspeed, the two will be collaborating to meet this demand with a new chip fabrication plant in Germany.

The company itself confirmed the plant this morning. The upcoming factory “will be the world’s largest, utilizing innovative manufacturing processes to produce next-generation Silicon Carbide devices.” But the importance of the factory isn’t just due to its potential to meet the near overwhelming demand of automakers for EV computer chips, but in its strategic location.

Saarland, a German state located on the border with France, will reportedly be the home of the upcoming fabrication location. From there, Wolfspeed and ZF would be able to quickly and efficiently meet the demand for EV chips of Porsche in Stuttgart, BMW in Bavaria, and Mercedes in central Germany. Further, it would also be able to meet upcoming demand from Renault and Stellantis just over the border in France.

Even outside of that immediate radius, Tesla’s massive Giga-Berlin facility and Ford’s numerous production locations found in Northern Germany can benefit from this new supply.

Neither a production start date nor an estimate of production capacity have been announced, though construction will begin in the first half of this year, pending confirmation from the European Unions. The upcoming plant will supposedly cost €3 billion ($3.27 billion), with ZF holding a minority in the venture. This is part of Wolfspeed’s previously announced $6.5 billion global expansion plan, which included two other production locations in the United States.

German officials also see the new project as a win, one telling Reuters, “Amid the concerns that the U.S. wants to divert investments from Europe with its Inflation Reduction Act, we’re showing that a U.S. firm wants to invest in Germany.” However, it should be noted that Wolfspeed and ZF are likely attracted to Germany following the success of Europe’s own “IRA,” which plans to invest 45 billion euros ($49.03 billion) into computer chip manufacturing throughout the continent. The plan has yet to be finalized by the European Parliament.

“This project is a great transformation driver and a job engine for a traditionally industrial region. Furthermore, it bundles important know-how in Europe and contributes to the implementation of the European Green Deal by reducing energy consumption and CO2 emissions,” said Saarland Minister-President Anke Rehlinger. “We’re proud to have Wolfspeed, and have our region play such a vital role in advancing Silicon Carbide semiconductor innovation.”

Advertisement

The company’s press release noted that Wolfspeed specializes in “silicon carbide chips” typically used in high-voltage use cases, such as EV drivetrains. Manufacturers specifically choose the chips for their ability to operate under high loads while retaining energy efficiency. Wolfspeed already produces these chips en masse and has announced “the world’s largest chip plant,” which will be built in the United States and come online by 2030.

Wolfspeed and ZF have clearly chosen the ideal location for their upcoming plant. And with the ongoing battle for cheaper and cheaper EVs, the company is poised to benefit simply due to its physical proximity. Suppliers are finally considering moving away from China as the sole chip supplier, and in the quest for electrifying mobility, this may be key to a faster transition.

What do you think of the article? Do you have any comments, questions, or concerns? Shoot me an email at william@teslarati.com. You can also reach me on Twitter @WilliamWritin. If you have news tips, email us at tips@teslarati.com!

Will is an auto enthusiast, a gear head, and an EV enthusiast above all. From racing, to industry data, to the most advanced EV tech on earth, he now covers it at Teslarati.

Advertisement
Comments

Investor's Corner

Tesla (TSLA) Q4 and FY 2025 earnings results

Tesla’s Q4 and FY 2025 earnings come on the heels of a quarter where the company produced over 434,000 vehicles, delivered over 418,000 vehicles, and deployed 14.2 GWh of energy storage products.

Published

on

Credit: Tesla China

Tesla (NASDAQ:TSLA) has released its Q4 and FY 2025 earnings results in an update letter. The document was posted on the electric vehicle maker’s official Investor Relations website after markets closed today, January 28, 2025.

Tesla’s Q4 and FY 2025 earnings come on the heels of a quarter where the company produced over 434,000 vehicles, delivered over 418,000 vehicles, and deployed 14.2 GWh of energy storage products.

For the Full Year 2025, Tesla produced 1,654,667 and delivered 1,636,129 vehicles. The company also deployed a total of 46.7 GWh worth of energy storage products.

Tesla’s Q4 and FY 2025 results

As could be seen in Tesla’s Q4 and FY 2025 Update Letter, the company posted GAAP EPS of $0.24 and non-GAAP EPS of $0.50 per share in the fourth quarter. Tesla also posted total revenues of $24.901 billion. GAAP net income is also listed at $840 million in Q4.

Analyst consensus for Q4 has Tesla earnings per share falling 38% to $0.45 with revenue declining 4% to $24.74 billion, as per estimates from FactSet. In comparison, the consensus compiled by Tesla last week forecasted $0.44 per share on sales totaling $24.49 billion.

For FY 2025, Tesla posted GAAP EPS of $1.08 and non-GAAP EPS of $1.66 per share. Tesla also posted total revenues of $94.827 billion, which include $69.526 billion from automotive and $12.771 billion from the battery storage business. GAAP net income is also listed at $3.794 billion in FY 2025.

Below is Tesla’s Q4 and FY 2025 update letter.

TSLA-Q4-2025-Update by Simon Alvarez










Advertisement
Continue Reading

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading