A recently published Tesla patent application titled “Autonomous Driving System Emergency Signaling” describes a method of quickly communicating emergency information from vehicle sensors feeding into autonomous driving software. The new communication method will improve Autopilot’s response in emergency situations, thereby reducing the probability of accidents.
Tesla’s invention takes latency in data transmission into account as an area of improvement. In general, critical information can get stuck waiting to be processed by a computer after non-critical information that’s ahead of it. Under Tesla’s US Patent Application No. 2019/0138018, critical emergency situations detected by sensors are moved to the front of the line for priority processing and response. Tesla’s invention achieves this using two main approaches.
- Tesla’s self-driving patent hints at faster collision response times. | Image: Tesla/USPTO
- Tesla’s self-driving patent hints at faster collision response times. | Image: Tesla/USPTO
- Tesla’s self-driving patent hints at faster collision response times. | Image: Tesla/USPTO
First, the transmission from sensors that detect an emergency sends their findings to the main computer at a higher transmit power than other messages. Other signals at lower power transmissions are then interpreted as ‘background noise’ compared to the emergency signal. This process is described in the patent application as follows:
“When an autonomous driving emergency event is detected by an autonomous driving sensor…the [sensor] transmits the autonomous driving emergency message in a non-assigned time slot at a higher transmit power level than a transmit power level of an autonomous driving sensor…Because the autonomous driving emergency message is transmitted at a higher power level than the transmission from the autonomous driving sensor, the transmission from the autonomous driving sensor may be treated as background noise by the autonomous driving controller to thereby receive and decode of the autonomous driving emergency message.”
- Tesla’s self-driving patent hints at faster collision response times. | Image: Tesla/USPTO
- Tesla’s self-driving patent hints at faster collision response times. | Image: Tesla/USPTO
- Tesla’s self-driving patent hints at faster collision response times. | Image: Tesla/USPTO
In a second approach, the autonomous driving sensors that encounter an emergency message are programmed to stop sending signals, and the vehicle’s main computer will direct them to resume communications after receiving the emergency message. This process is described in the patent as follows:
“…if an emergency transmission is detected…the autonomous driving sensor ceases transmitting autonomous driving data. Such cessation may continue for one assigned time slot, for more than one assigned slots, and/or until the autonomous driving sensor receives direction from the autonomous driving controller to continue transmitting autonomous driving data or receives a new…bus time slot assignment from the autonomous driving controller. During this time period…the autonomous driving sensor continues to collect and buffer autonomous driving data.”
Several variations of achieving these two main concepts are also described in the application and invention claims, including managing the specifics of the transmit power level differences and reassigning time slots for sensors to communicate on the data bus. Overall, this recent patent application is yet another indicator of Tesla’s continued improvement of its autonomous driving capabilities.
Tesla’s advances in the autonomous driving arena have been touted by CEO Elon Musk and industry experts alike. ARK Invest analyst James Wang recently estimated that the all-electric car maker’s decision to develop its Full Self-Driving computer chip in-house put the company four years ahead of the competition. Musk, for his part, declared the chip the best in the world at Tesla’s Investor Autonomy Day. “It seems improbable. How could it be that Tesla, who has never designed a chip before, would design the best chip in the world? But that is objectively what has occurred,” Elon touted.
While Tesla has yet to roll out the total capabilities of its Full Self-Driving suite, Musk has said on several occasions that the software will be “feature complete” by the end of 2019 with only regulatory hurdles left for full release.
News
Elon Musk confirms Tesla FSD V14.2 will see widespread rollout
Musk shared the news in a post on social media platform X.

Elon Musk has confirmed that Tesla will be implementing a wide rollout of Full Self-Driving (FSD) V14 with the system’s V14.2 update. Musk shared the news in a post on social media platform X.
FSD V14.1.2 earns strong praise from testers
Musk’s comment came as a response to Tesla owner and longtime FSD tester AI DRIVR, who noted that it might be time to release Full Self-Driving to the fleet because V14.1.2 has already become very refined.
“95% of the indecisive lane changes and braking have been fixed in FSD 14.1.2. I haven’t touched my steering wheel in two days. I think it’s time, Tesla AI,” the longtime FSD tester wrote.
AI DRIVR’s comment received quite a bit of support from fellow Tesla drivers, some of whom noted that the improvements that were implemented in V14.1.2 are substantial. Others also agreed that it’s time for FSD to see a wide release.
In his reply to the FSD tester, CEO Elon Musk noted that FSD V14’s wide release would happen with V14.2. “14.2 for widespread use,” Musk wrote in his reply.
Mad Max mode makes headlines
One of the key features that was introduced with FSD’s current iteration is Mad Max mode, which allows for higher speeds and more frequent lane changes than the previous “Hurry” mode. Videos and social media posts from FSD testers have shown the system deftly handling complex traffic, merging seamlessly, and maintaining an assertive but safe driving behavior with Mad Max mode engaged.
Tesla AI head Ashok Elluswamy recently noted in a post on X that Mad Max mode was built to handle congested daytime traffic, making it extremely useful for drivers who tend to find themselves in heavy roads during their daily commutes. With Musk now hinting that FSD V14.2 will go on wide release, it might only be a matter of time before the larger Tesla fleet gets to experience the notable improvements of FSD’s V14 update.
News
Multiple Tesla Cybercab units spotted at Giga Texas crash test facility
The vehicles were covered, but one could easily recognize the Cybercab’s sleek lines and compact size.

It appears that Tesla is ramping up its activities surrounding the development and likely initial production of the Cybercab at Giga Texas. This was, at least, hinted at in a recent drone flyover of the massive electric vehicle production facility in Austin.
Cybercab sightings fuel speculations
As observed by longtime Giga Texas drone operator Joe Tegtmeyer, Tesla had several covered Cybercab units outside the facility’s crash testing facility at the time of his recent flyover. The vehicles were covered, but one could easily recognize the Cybercab’s sleek lines and compact size. Tegtmeyer also observed during his flyover that production of the Model Y Standard seems to be hitting its pace.
The drone operator noted that the seven covered Cybercabs might be older prototypes being decommissioned or new units awaiting crash tests. Either scenario points to a ramp-up in Cybercab activity at Giga Texas, however. “In either case, this is another datapoint indicating production is getting closer to happening,” Tegtmeyer wrote on X, highlighting that the autonomous two-seaters were quite exciting to see.
Cybercab production targets
This latest sighting follows reports of renewed Cybercab appearances at both the Fremont Factory and Giga Texas. A test unit was recently spotted driving on Giga Texas’ South River Road. Another Cybercab, seen at Tesla’s Fremont Factory, appeared to be manually driven, suggesting that the vehicle’s current prototypes may still be produced with temporary steering controls.
The Tesla Cybercab is designed to be the company’s highest-volume vehicle, with CEO Elon Musk estimating that the autonomous two-seater should see an annual production rate of about 2 million units per year. To accomplish this, Tesla will be building the Cybercab using its “Unboxed” process, which should help the vehicle’s production line achieve outputs that are more akin to consumer electronics production lines.
Elon Musk
Teslas in the Boring Co. Vegas Loop are about to get a big change
Elon Musk has a big update for Teslas that operate within the Boring Company’s Vegas Loop.

Tesla vehicles operating in the Boring Company’s Vegas Loop are about to get a big change, CEO Elon Musk said.
In Las Vegas, the Boring Company operates the Vegas Loop, an underground tunnel system that uses Teslas to drop people off at various hotspots on the strip. It’s been active for a few years now and is expanding to other resorts, hotels, and destinations.
Currently, there are stops at three resorts: Westgate, the Encore, and Resorts World. However, there will eventually be “over 100 stations and span over 68 miles of tunnel,” the Vegas Loop website says.
The Loop utilizes Tesla Model 3 and Model Y vehicles to send passengers to their desired destinations. They are currently driven using the Full Self-Driving suite, but they also have safety drivers in each vehicle to ensure safety.
Tesla Cybertruck rides are crucial for Vegas Loop expansion to airport
Tesla and the Boring Company have been working to remove drivers from the vehicles used in the Loop, but now, it appears there is a set timeline to have them out, according to CEO Elon Musk:
The Tesla cars operating in The Boring Company tunnels under Las Vegas will be driverless in a month or two https://t.co/mX4nNrJui9
— Elon Musk (@elonmusk) October 18, 2025
Musk says the Boring Co. will no longer rely on safety drivers within the Teslas for operation. Instead, Tesla will look to remove the safety drivers from the cars within the next month or two, a similar timeline for what Musk believes the Robotaxi platform will look like in Austin.
In Texas, as Robotaxi continues to operate as it has since June, there are still safety monitors within the car who sit in the passenger’s seat. They are there to ensure a safe experience for riders.
When the route takes the vehicle on the highway, safety monitors move into the driver’s seat.
However, Tesla wants to be able to remove safety monitors from its vehicles in Austin by the end of the year, Musk has said recently.
In early September, Musk said that the safety monitors are “just there for the first few months to be extra safe.” He then added that there “should be no safety driver by end of year.”
The safety driver is just there for the first few months to be extra safe.
Should be no safety driver by end of year.
— Elon Musk (@elonmusk) September 4, 2025
-
Elon Musk2 days ago
SpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real
-
Elon Musk1 day ago
Tesla Full Self-Driving gets an offer to be insured for ‘almost free’
-
News23 hours ago
Elon Musk confirms Tesla FSD V14.2 will see widespread rollout
-
News2 days ago
Tesla is adding an interesting feature to its centerscreen in a coming update
-
News4 days ago
Tesla launches new interior option for Model Y
-
News3 days ago
Tesla widens rollout of new Full Self-Driving suite to more owners
-
News4 days ago
Tesla makes big move with its Insurance program
-
Elon Musk2 days ago
Tesla CEO Elon Musk’s $1 trillion pay package hits first adversity from proxy firm