Connect with us
Boeing's Starliner and SpaceX's Crew Dragon spacecraft stand vertical at their respective launch pads in December 2019 and January 2020. Crew Dragon has now performed two successful full-up launches to Starliner's lone partial failure. (Richard Angle) Boeing's Starliner and SpaceX's Crew Dragon spacecraft stand vertical at their respective launch pads in December 2019 and January 2020. Crew Dragon has now performed two successful full-up launches to Starliner's lone partial failure. (Richard Angle)

News

SpaceX, Boeing astronaut spacecraft working towards orbital meet-up in 2020

Boeing's Starliner and SpaceX's Crew Dragon spacecraft could potentially meet in orbit at the International Space Station later this year. (Richard Angle)

Published

on

According to Boeing’s new Starliner testing plan, the spacecraft could potentially meet SpaceX’s own Crew Dragon astronaut spacecraft in orbit at the International Space Station (ISS) later this year.

Following Starliner’s near-catastrophic December 2019 orbital flight test (OFT), Boeing and NASA have finally announced that – at a minimum – a second uncrewed flight test will have to be completed before the company will be allowed to launch astronauts. According to the Washington Post, Starliner’s return to flight is expected to occur no earlier than October or November 2020, 10 or 11 months after it suffered several major software failures during its first spaceflight. While delays to that flight schedule are incredibly likely, it does mean that there’s a chance that SpaceX’s second crewed Crew Dragon launch could coincide with Starliner’s second orbital mission — a first for the two NASA Commercial Crew Program (CCP) providers.

Just one week before NASA and Boeing revealed plans to refly Starliner’s uncrewed flight test, NASA announced that SpaceX’s first operational Crew Dragon launch now has a full four astronauts assigned to it. Scheduled to launch no earlier than Q4 2020, the spacecraft will carry three NASA astronauts and one Japanese (JAXA) astronaut to the ISS, remaining in orbit for at least six months before returning its crew back to Earth. Now, there’s a chance that SpaceX’s first operational Crew Dragon will be joined in orbit by Boeing’s Starliner spacecraft sometime soon after arriving on station.

An photo of SpaceX’s Crew Dragon spacecraft in orbit. (NASA)
A render of Boeing’s Starliner spacecraft in orbit. (Boeing)

As previously discussed on Teslarati, Boeing’s Starliner OFT suffered several near-catastrophic close calls in the few days it spent in space, all of which appear to have egregiously shoddy and unqualified software to blame.

“Starliner launched atop a ULA Atlas V rocket on its orbital launch debut (OFT) on December 20th, 2019. Atlas V performed flawlessly but immediately after Starliner separated from the rocket, things went very wrong.

Bad software ultimately caused the spacecraft to perform thousands of uncommanded maneuvering thruster burns, depleting a majority of its propellant before Boeing was able to intervene. Starliner managed to place itself in low Earth orbit (LEO), but by then it had nowhere near enough propellant left to rendezvous and dock with the ISS – one of the most crucial purposes of the flight test. Unable to complete that part of the mission, Boeing instead did a few small tests over the course of 48 hours in orbit before commanding the spacecraft’s reentry and landing on December 22nd.

The Starliner spacecraft also reportedly almost suffered a second major software failure just hours before reentry. According to NASA and Boeing comments in a press conference held only after news of that second failure broke, a second Starliner software bug – caught only because the first failure forced Boeing to double-check its code – could have had far more catastrophic consequences. NASA stated that had the second bug not been caught, some of Starliner’s thruster valves would have been frozen, either entirely preventing or severely hampering the spacecraft’s detached trunk from properly maneuvering in orbit. Apparently, that service module (carrying fuel, abort engines, a solar array, and more) could have crashed into the crew module shortly after detaching.”


Teslarati.com — February 11th, 2020

The only sane response was obviously for NASA to require Boeing to successfully complete a second Orbital Flight Test (OFT), a necessary decision the space agency and card-holder was bizarrely hesitant to acknowledge. Now, almost four months after Starliner was nearly lost on its first orbital flight test, NASA and Boeing have finally stated the obvious and confirmed that a second OFT will be required before astronauts can fly on Starliner. Even then, if things go wrong during OFT2 or Boeing completes the mission but still fails to rectify all faults identified by a joint failure investigation, NASA may still delay the spacecraft’s astronaut launch debut.

Advertisement
-->
SpaceX has successfully completed and launched two Crew Dragon spacecraft, one to orbit and back and the other on a successful in-flight abort (IFA) demonstration. A third is scheduled to launch to the space station as early as next month. (NASA/Richard Angle/SpaceX)

SpaceX has undeniably had its own stumbles while developing Crew Dragon, most notably when the first successfully flight-proven spacecraft violently exploded moments before a static fire test in April 2019. SpaceX was able to rectify the responsible design flaws and successfully complete an identical static fire test less than seven months later, followed by a second successful launch less than three months after that. Based on WaPo’s indication that Starliner’s second OFT is scheduled for Q4 2020, Boeing is now anywhere from 12-18 months behind SpaceX with its efforts to launch NASA astronauts to and from the space station. SpaceX successfully completed Crew Dragon’s OFT equivalent in March 2019.

Regardless, if Crew Dragon performs flawlessly during its Demo-2 astronaut launch debut – scheduled no earlier than mid-to-late May – and Boeing’s Starliner OFT2 mission launches on time in Q4 2020, there is a great chance that both spacecraft will be simultaneously docked to the space station. Better circumstances would be unequivocally preferable but it will still mark an important symbolic milestone for NASA’s Commercial Crew Program (CCP) and assured access to the ISS.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco

“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.

Published

on

Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage. 

While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.

Tesla FSD handles total darkness

The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.

Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post. 

Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.  

Advertisement
-->

Waymo’s blackout struggles

Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out. 

In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”

A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading

News

Waymo scrutinized after self-driving taxis cause traffic jams during SF blackout

It’s not farfetched to speculate that it would have been a doomsday scenario for Tesla had FSD behaved this way.

Published

on

Credit: @AnnTrades/X

A power outage across San Francisco over the weekend forced numerous Waymo self-driving taxis to stop at darkened intersections and cause traffic blockages in multiple locations across the city. The disruption left riders stranded, frustrated drivers blocked, and city officials stepping in as the Alphabet-owned company temporarily suspended service amid the widespread gridlock.

Needless to say, it would likely have been a doomsday scenario for Tesla had FSD behaved in a similar way, especially if fleets of its robotaxis blocked traffic for numerous drivers. 

Power outage halts Waymo fleet

The outage knocked out electricity for tens of thousands of customers, leaving traffic signals dark across large parts of the city, as noted in a report from the New York Times. Waymo vehicles began stopping at intersections and remained stationary for extended periods, seemingly unable to operate. Tow truck operators worked through the night removing immobilized vehicles, while videos circulated online showing Waymos with hazard lights flashing as traffic backed up around them.

Waymo later confirmed that it had paused its Bay Area ride-hailing service after the San Francisco mayor’s office contacted the company about the congestion its vehicles were contributing to. Service began coming back online shortly after 3:30 p.m. local time, though some users still reported being unable to request rides. Waymo maintained that no injuries or accidents were reported during the outage.

Autonomous cars during emergencies

The incident surprised industry observers since autonomous vehicles are designed to function during signal outages and temporary connectivity losses. Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.” Experts suggested the problem may have been linked to the vehicles’ reliance on remote assistance teams, which help resolve complex situations the cars cannot handle independently.

Advertisement
-->

“Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading

News

Tesla aims to combat common Full Self-Driving problem with new patent

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

Published

on

Credit: @samsheffer | x

Tesla is aiming to combat a common Full Self-Driving problem with a new patent.

One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.

Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.

Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.

Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.

The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”

Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.

This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.

CEO Elon Musk said during the Q2 Earnings Call:

“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”

Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.

Continue Reading