

Energy
Google’s giant “kite” can generate wind energy from almost anywhere
A Google X division company named Makani has designed a giant “kite” that can generate enough wind energy to power about 300 homes. Named the “M600” after the 600 kW of electricity produced by its movement, the craft resembles a sport glider with two levels of multiple propellers on the front, more generally described as an aerodynamic wing. After more than ten years of development and a prototype test flight in 2016, M600 has begun full size testing in Hawaii this year to continue its journey towards becoming a portable power solution that can be brought anywhere with sufficient wind to propel it.
The functionality of M600 is fairly straightforward. After being connected to a 1400 foot high-strength tether, it uses 8 onboard motors to climb from a 15-foot base station to its determined altitude (about 1000 ft) with a small amount of voltage power. Then, it transitions into crosswind where it flies in 800 foot wide loops lasting 10-25 seconds each to generate maximum power via onboard computers guided by data from sensors, GPS, and an inertial navigation system.
The rotation of the 85 foot wide kite’s rotors drives magnet motors/generators on board, producing electricity that transfers down the tether where it can be connected to an energy grid. The electricity comes down in DC (direct current), but is converted to AC (alternating current) at its base station.
- The M600 wind power kite during testing in Hawaii. | Credit: Makani/X Development LLC
- The M600 wind power kite during testing in Hawaii. | Credit: Makani/X Development LLC
- The M600 wind power kite during testing in Hawaii. | Credit: Makani/X Development LLC
- The M600 wind power kite during testing in Hawaii. | Credit: Makani/X Development LLC
- The M600 wind power kite during testing in Hawaii. | Credit: Makani/X Development LLC
- The M600 wind power kite during testing in Hawaii. | Credit: Makani/X Development LLC
One of the needs driving Makani’s kite is accessing wind sources that aren’t practical or cost-effective in today’s markets. Its mass is about 10% of a conventional wind turbine with similar output thanks to the carbon fiber materials it’s primarily made from. The lighter, portable design of the M600 could help bring wind energy to areas devastated by natural disasters and places where coastal waters are too deep for other wind systems to sit on the seabed.
Google’s X division (under the broader parent company Alphabet Inc.) is a secretive development factory dedicated to radical innovations that solve the world’s toughest problems. It provided the initial funding for Makani’s kite technology as part of its 2007 RE<C initiative and officially graduated the company into X in 2013. As part of X, the company is working towards the one of the division’s missions of promoting global adoption of renewable energy and developing airborne wind energy technology.
Makani is not the only company developing flying wind generators. The “airborne wind energy” (AWE) industry is full of competitors developing their own versions. As a new clean energy technology, though, AWE companies face an uphill battle in becoming commercially viable due to research and development costs that take years, a problem faced by many new industries overall. However, as the technology comes to market and matures, AWE could follow the path forged by traditional turbine wind power which is now competitive with fossil fuels. A recent report by IDTechEx projected AWE will become a multi-billion dollar industry within 20 years.
The Makani team is continuing to develop more advanced versions of its wind energy kite while discussing the technical and economic integration aspects of the technology with industry experts. Initial ground and hover tests of the kite begun in Hawaii in August this year. In the coming weeks, the full 85-foot commercial version of the M600 will finally be tested.
Watch the below video to see the M600 prototype in action:
Energy
Tesla Energy is the world’s top global battery storage system provider again
Tesla Energy captured 15% of the battery storage segment’s global market share in 2024.

Tesla Energy held its top position in the global battery energy storage system (BESS) integrator market for the second consecutive year, capturing 15% of global market share in 2024, as per Wood Mackenzie’s latest rankings.
Tesla Energy’s lead, however, is shrinking, as Chinese competitors like Sungrow are steadily increasing their global footprint, particularly in European markets.
Tesla Energy dominates in North America, but its lead is narrowing globally
Tesla Energy retained its leadership in the North American market with a commanding 39% share in 2024. Sungrow, though still ranked second in the region, saw its share drop from 17% to 10%. Powin took third place, even if the company itself filed for bankruptcy earlier this year, as noted in a Solar Power World report.
On the global stage, Tesla Energy’s lead over Sungrow shrank from four points in 2023 to just one in 2024, indicating intensifying competition. Chinese firm CRRC came in third worldwide with an 8% share.
Wood Mackenzie ranked vendors based on MWh shipments with recognized revenue in 2024. According to analyst Kevin Shang, “Competition among established BESS integrators remains incredibly intense. Seven of the top 10 vendors last year struggled to expand their market share, remaining either unchanged or declining.”

Chinese integrators surge in Europe, falter in U.S.
China’s influence on the BESS market continues to grow, with seven of the global top 10 BESS integrators now headquartered in the country. Chinese companies saw a 67% year-over-year increase in European market share, and four of the top 10 BESS vendors in Europe are now based in China. In contrast, Chinese companies’ market share in North America dropped more than 30%, from 23% to 16% amid Tesla Energy’s momentum and the Trump administration’s policies.
Wood Mackenzie noted that success in the global BESS space will hinge on companies’ ability to adapt to divergent regulations and geopolitical headwinds. “The global BESS integrator landscape is becoming increasingly complex, with regional trade policies and geopolitical tensions reshaping competitive dynamics,” Shang noted, pointing to Tesla’s maintained lead and the rapid ascent of Chinese rivals as signs of a shifting industry balance.
“While Tesla maintains its global leadership, the rapid rise of Chinese integrators in Europe and their dominance in emerging markets like the Middle East signals a fundamental shift in the industry. Success will increasingly depend on companies’ ability to navigate diverse regulatory environments, adapt to local market requirements, and maintain competitive cost structures across multiple regions,” the analyst added.
Energy
Tesla inks multi-billion-dollar deal with LG Energy Solution to avoid tariff pressure
Tesla has reportedly secured a sizable partnership with LGES for LFP cells, and there’s an extra positive out of it.

Tesla has reportedly inked a multi-billion-dollar deal with LG Energy Solution in an effort to avoid tariff pressure and domesticate more of its supply chain.
Reuters is reporting that Tesla and LGES, a South Korean battery supplier of the automaker, signed a $4.3 billion deal for energy storage system batteries. The cells are going to be manufactured by LGES at its U.S. factory located in Michigan, the report indicates. The batteries will be the lithium iron phosphate, or LFP, chemistry.
Tesla delivers 384,000 vehicles in Q2 2025, deploys 9.6 GWh in energy storage
It is a move Tesla is making to avoid buying cells and parts from overseas as the Trump White House continues to use tariffs to prioritize domestic manufacturing.
LGES announced earlier today that it had signed a $4.3 billion contract to supply LFP cells over three years to a company, but it did not identify the customer, nor did the company state whether the batteries would be used in automotive or energy storage applications.
The deal is advantageous for both companies. Tesla is going to alleviate its reliance on battery cells that are built out of the country, so it’s going to be able to take some financial pressure off itself.
For LGES, the company has reported that it has experienced slowed demand for its cells in terms of automotive applications. It planned to offset this demand lag with more projects involving the cells in energy storage projects. This has been helped by the need for these systems at data centers used for AI.
During the Q1 Earnings Call, Tesla CFO Vaibhav Taneja confirmed that the company’s energy division had been impacted by the need to source cells from China-based suppliers. He went on to say that the company would work on “securing additional supply chain from non-China-based suppliers.”
It seems as if Tesla has managed to secure some of this needed domestic supply chain.
Energy
Tesla Shanghai Megafactory produces 1,000th Megapack for export to Europe
The Shanghai Megafactory was able to hit this milestone less than six months after it started producing the Megapack.

Tesla Energy has announced a fresh milestone for its newest Megapack factory. As per the electric vehicle maker, the Shanghai Megafactory has successfully produced its 1,000th Megapack battery.
The facility was able to hit this milestone less than six months after it started producing the grid-scale battery system.
New Tesla Megapack Milestone
As per Tesla Asia in a post on its official accounts on social media platform X, the 1,000th Megapack unit that was produced at the Shanghai Megafactory would be exported to Europe. As noted in a CNEV Post report, Tesla’s energy products are currently deployed in over 65 countries and regions globally. This allows Tesla Energy to compete in energy markets that are both emerging and mature.
To commemorate the 1,000th Megapack produced at the Shanghai Megafactory, the Tesla China team posted with the grid-scale battery with celebratory balloons that spelled “Megapack 1000.” The milestone was celebrated by Tesla enthusiasts on social media, especially since the Shanghai Megafactory only started its operations earlier this year.
Quick Megafactory Ramp
The Shanghai Megafactory, similar to Tesla’s other key facilities in China, was constructed quickly. The facility started its construction on May 23, 2024, and it was hailed as Tesla’s first entry storage project outside the United States. Less than a year later, on February 11, 2025, the Shanghai Megafactory officially started producing Megapack batteries. And by March 21, 2025, Tesla China noted that it had shipped the first batch of Megapack batteries from the Shanghai plant to foreign markets.
While the Shanghai Megafactory is still not at the same level of output as Tesla’s Lathrop Megafactory, which produces about 10,000 Megapacks per year, its ramp seems to be quite steady and quick. It would then not be surprising if Tesla China announces the Shanghai Megafactory’s 2,000th Megapack milestone in the coming months.
-
Elon Musk2 days ago
SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative
-
Elon Musk21 hours ago
Elon Musk reveals when SpaceX will perform first-ever Starship catch
-
News2 days ago
Tesla appears to have teased a long-awaited Model Y trim for a Friday launch
-
News5 days ago
Tesla makes big change to encourage Full Self-Driving purchases
-
News2 days ago
Tesla Semi earns strong reviews from veteran truckers
-
News1 day ago
Tesla launches Full Self-Driving in a new region
-
News2 days ago
Tesla China working overtime to deliver Model Y L as quickly as possible
-
News1 day ago
Tesla AI6 chips will start sample production at surprising Samsung site