Connect with us

Energy

Big Auto is copying Tesla, and not just its cars

Source: Tesla

Published

on

Electric vehicles are part of a sustainable energy/transportation ecosystem that also includes charging infrastructure, smart grid technology and renewable energy. The key that ties all of these components together is energy storage. Storage, specifically batteries, is the enabling technology that makes modern EVs possible, and that makes renewable energy viable. Battery storage also provides a number of other benefits for the electrical grid, such as load balancing and frequency regulation.

Unsurprisingly, Tesla understood this synergy early in the game, and its Tesla Energy division has carved out a lucrative side business selling stationary battery storage to electric utilities, as well as residential and commercial energy customers (actually, “side business” may not be quite the right description, as Elon Musk has predicted that Tesla’s energy business may someday be bigger than its car business).

As a recent article in SingularityHub explains, other auto manufacturers see the possibilities and are also beginning to enter into the stationary storage market. BMW recently signed a contract to incorporate 500 i3 battery packs into the UK’s national electrical grid. Renault is developing a home energy storage product based on its Zoe batteries. Toyota and Nissan have both announced plans to offer energy storage, and Audi is one of several brands that are exploring the possibilities with pilot projects.

Above: Nissan hired actress Margot Robbie to showcase its home energy “xStorage” product along with its all-electric Nissan Leaf (Youtube: Motorward)

Advertisement

It’s a natural move for the automakers, who are steadily securing supplies of batteries for the EVs they’ll soon be building in volume. Volkswagen recently announced plans to invest $48 billion on battery tech over the next few years. If companies are going to be making large amounts of batteries, it simply makes sense to explore other markets that require storage.

Of course, Tesla has been doing just that for a few years now. The California trendsetter has scored some highly-publicized successes with utility-scale projects in Australia, and its Powerpacks are becoming popular for off-grid applications around the world.

But there’s more to this than just opening new markets for batteries. Tesla’s vehicles are seen as part of an ecosystem of products designed to function smoothly together. As Elon Musk explained to Fast Company, “This is the integrated future. You’ve got an electric car, a Powerwall, and a Solar Roof.” As Apple and Amazon have demonstrated, this can be an unbeatable strategy – if a customer is driving a Model S, and is impressed with the company, she’ll be that much more likely to buy a solar electric system (and why not a flamethrower, too?) from Tesla as well. The legacy automakers would be foolish to ignore the possibilities.

In dollar terms, those possibilities are staggering. Markets Insider predicts that the market for grid-connected battery storage will grow from $3.3 billion in 2016 to $14 billion by 2021, and probably well over $100 billion by 2030 – a compound annual growth rate of around 34 percent.

It’s not even necessary to produce batteries specifically for the stationary storage market. As EV batteries age, they gradually lose capacity, and drivers, who crave maximum range, will want to replace them. However, once a superannuated battery is no longer suitable for use in a vehicle, it can still be quite useful in a stationary storage application. Several automakers are investigating the possibilities of “second-life” EV batteries.

Advertisement

===

Note: Article originally published on evannex.com by Charles Morris; Source: SingularityHub

Energy

Tesla’s new Megablock system can power 400,000 homes in under a month

Tesla also unveiled the Megapack 3, the latest iteration of its flagship utility scale battery.

Published

on

Credit: Tesla

Tesla has unveiled the Megablock and Megapack 3, the latest additions to its industrial-scale battery storage solution lineup. 

The products highlight Tesla Energy’s growing role in the company, as well as the division’s growing efforts to provide sustainable energy solutions for industrial-scale applications.

Megablock targets speed and scale

During the “Las Megas” event in Las Vegas, Tesla launched Megablock, a pre-engineered medium-voltage block designed to integrate Megapack 3 units in a plug-and-play system. Capable of 20 MWh AC with a 25-year life cycle and more than 10,000 cycles, the Megablock could achieve 91% round-trip efficiency at medium voltage, inclusive of auxiliary loads.

Tesla emphasized that Megablock can be installed 23% faster with up to 40% lower construction costs. The platform eliminates above-ground cabling through a new flexible busbar assembly and delivers site-level density of 248 MWh per acre. With Megablock, Tesla is also aiming to commission 1 GWh in just 20 business days, or enough to power 400,000 homes in less than a month. 

“With Megablock, we are targeting to commission 1 GWh in 20 business days, which is the equivalent of bringing power to 400,000 homes in less than a month. It’s crazy. How are we planning to do that? Like most things at Tesla, we are ruthlessly attacking every opportunity to save our customers time, simplify the process, remove steps, (and) automate as much as we can,” the company said. 

Advertisement

Megapack 3 is all about simplicity

The Megapack 3 is Tesla’s next-generation utility battery, designed with a simplified architecture that cuts 78% of connections compared to the previous version. Its thermal bay is drastically simplified, and it uses a Model Y heat pump on steroids. The battery weighs about 86,000 pounds and holds 5 MWh of usable AC energy. Tesla engineers incorporated a larger battery module and a new 2.8-liter LFP cell co-developed with the company’s cell team.

The Megapack 3 is designed for serviceability, and it features easier front access and no roof penetrations. About 75% of Megapack 3’s total mass is battery cells, with individual modules weighing as much as a Cybertruck. It’s also tough, with an ambient operating temperature range from -40C to 60C. This should allow the Megapack 3 to operate optimally from the coldest to the hottest regions on the planet.

Production is set to begin at Tesla’s Houston Megafactory in late 2026, with planned capacity of 50 GWh per year. Additional supply will come from Tesla’s 7 GWh LFP facility in Nevada, which is expected to open in 2025, as well as with third-party partners.

Continue Reading

Energy

Tesla Energy is the world’s top global battery storage system provider again

Tesla Energy captured 15% of the battery storage segment’s global market share in 2024.

Published

on

Credit: Tesla

Tesla Energy held its top position in the global battery energy storage system (BESS) integrator market for the second consecutive year, capturing 15% of global market share in 2024, as per Wood Mackenzie’s latest rankings.

Tesla Energy’s lead, however, is shrinking, as Chinese competitors like Sungrow are steadily increasing their global footprint, particularly in European markets.

Tesla Energy dominates in North America, but its lead is narrowing globally

Tesla Energy retained its leadership in the North American market with a commanding 39% share in 2024. Sungrow, though still ranked second in the region, saw its share drop from 17% to 10%. Powin took third place, even if the company itself filed for bankruptcy earlier this year, as noted in a Solar Power World report. 

On the global stage, Tesla Energy’s lead over Sungrow shrank from four points in 2023 to just one in 2024, indicating intensifying competition. Chinese firm CRRC came in third worldwide with an 8% share.

Wood Mackenzie ranked vendors based on MWh shipments with recognized revenue in 2024. According to analyst Kevin Shang, “Competition among established BESS integrators remains incredibly intense. Seven of the top 10 vendors last year struggled to expand their market share, remaining either unchanged or declining.”

Advertisement

Chinese integrators surge in Europe, falter in U.S.

China’s influence on the BESS market continues to grow, with seven of the global top 10 BESS integrators now headquartered in the country. Chinese companies saw a 67% year-over-year increase in European market share, and four of the top 10 BESS vendors in Europe are now based in China. In contrast, Chinese companies’ market share in North America dropped more than 30%, from 23% to 16% amid Tesla Energy’s momentum and the Trump administration’s policies.

Wood Mackenzie noted that success in the global BESS space will hinge on companies’ ability to adapt to divergent regulations and geopolitical headwinds. “The global BESS integrator landscape is becoming increasingly complex, with regional trade policies and geopolitical tensions reshaping competitive dynamics,” Shang noted, pointing to Tesla’s maintained lead and the rapid ascent of Chinese rivals as signs of a shifting industry balance.

“While Tesla maintains its global leadership, the rapid rise of Chinese integrators in Europe and their dominance in emerging markets like the Middle East signals a fundamental shift in the industry. Success will increasingly depend on companies’ ability to navigate diverse regulatory environments, adapt to local market requirements, and maintain competitive cost structures across multiple regions,” the analyst added.

Continue Reading

Energy

Tesla inks multi-billion-dollar deal with LG Energy Solution to avoid tariff pressure

Tesla has reportedly secured a sizable partnership with LGES for LFP cells, and there’s an extra positive out of it.

Published

on

Credit: Tesla

Tesla has reportedly inked a multi-billion-dollar deal with LG Energy Solution in an effort to avoid tariff pressure and domesticate more of its supply chain.

Reuters is reporting that Tesla and LGES, a South Korean battery supplier of the automaker, signed a $4.3 billion deal for energy storage system batteries. The cells are going to be manufactured by LGES at its U.S. factory located in Michigan, the report indicates. The batteries will be the lithium iron phosphate, or LFP, chemistry.

Tesla delivers 384,000 vehicles in Q2 2025, deploys 9.6 GWh in energy storage

It is a move Tesla is making to avoid buying cells and parts from overseas as the Trump White House continues to use tariffs to prioritize domestic manufacturing.

LGES announced earlier today that it had signed a $4.3 billion contract to supply LFP cells over three years to a company, but it did not identify the customer, nor did the company state whether the batteries would be used in automotive or energy storage applications.

The deal is advantageous for both companies. Tesla is going to alleviate its reliance on battery cells that are built out of the country, so it’s going to be able to take some financial pressure off itself.

For LGES, the company has reported that it has experienced slowed demand for its cells in terms of automotive applications. It planned to offset this demand lag with more projects involving the cells in energy storage projects. This has been helped by the need for these systems at data centers used for AI.

During the Q1 Earnings Call, Tesla CFO Vaibhav Taneja confirmed that the company’s energy division had been impacted by the need to source cells from China-based suppliers. He went on to say that the company would work on “securing additional supply chain from non-China-based suppliers.”

It seems as if Tesla has managed to secure some of this needed domestic supply chain.

Continue Reading

Trending