Connect with us
byd-indonsia-launch-2024 byd-indonsia-launch-2024

News

BYD aims to debut solid-state EV battery in 2027

Published

on

Chinese automaker BYD has shared plans to debut initial demos of a solid state electric vehicle (EV) battery by 2027, according to one of the company’s top executives.

Sun Huajun, Chief Technical Officer of BYD’s battery business, last week said that the automaker would begin “demonstration use” of solid-state batteries by 2027, as stated during a forum and reported by CnEVPost. While the executive said he doesn’t expect large-scale adoption of solid-state EV batteries to take hold until 2030, he also highlights that other makers in the industry are developing the tech at a similar pace to BYD.

Eventually, Huajun says he expects the cost of solid-state ternary batteries to become comparable to liquid ternary batteries, though reaching volume production is expected to take at least a few years.

Solid-state EV batteries are expected to have substantially increased energy density, ultimately offering better driving range along with faster charging times.

Advertisement

Currently, BYD is the world’s second-largest battery maker behind Contemporary Amperex Technology Co., which is also based in China. Last year, BYD installed a total battery capacity of 153.7 GWh across its products for a 17.2 percent global market share, following CATL which held about 37.9 percent of the market.

READ MORE ABOUT BYD: BYD experimenting with humanoid robots

CATL is also one of many companies developing solid-state batteries, though Chief Scientist Wu Kai said last April that it was expecting to continue facing issues with mass production of the battery chemistry. Like BYD, however, CATL is expecting to begin its rollout of solid-state batteries in 2027, starting with very low volume.

Other automotive giants including Honda, Toyota, and Volkswagen have shared plans to produce solid-state EV batteries, though development has been slow going.

Advertisement

What are your thoughts? Let me know at zach@teslarati.com, find me on X at @zacharyvisconti, or send us tips at tips@teslarati.com.

BYD Blade Battery to launch by 2025

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Zach is a renewable energy reporter who has been covering electric vehicles since 2020. He grew up in Fremont, California, and he currently lives in Colorado. His work has appeared in the Chicago Tribune, KRON4 San Francisco, FOX31 Denver, InsideEVs, CleanTechnica, and many other publications. When he isn't covering Tesla or other EV companies, you can find him writing and performing music, drinking a good cup of coffee, or hanging out with his cats, Banks and Freddie. Reach out at zach@teslarati.com, find him on X at @zacharyvisconti, or send us tips at tips@teslarati.com.

Advertisement
Comments

News

Tesla wins FCC approval for wireless Cybercab charging system

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.

Published

on

Credit: Tesla AI/X

Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system. 

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.

Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”

The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”

Advertisement

Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”

Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”

As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.

While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.

Advertisement

Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.

DA-26-168A1 by Simon Alvarez

Advertisement
Continue Reading

Elon Musk

Tesla posts updated FSD safety stats as owners surpass 8 billion miles

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles. 

Tesla shared the milestone in a post on its official X account.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading