The European Organization for Nuclear Research, more commonly known as CERN, recently published an ambitious proposal to build what could only be described as a mammoth accelerator that’s nearly four times as long and up to six times more powerful as its 27-km Large Hadron Collider (LHC), which studies the tiniest particles that make up all matter, dark matter, and infamously, black holes. The project is yet to be greenlit, but if a recent tweet from SpaceX and Tesla CEO Elon Musk is any indication, The Boring Company could play a part in the construction of the ambitious project.
In a tweet on Monday, Musk noted that the director of CERN had been quite interested in the tunneling technologies of The Boring Company, which could play a part in saving costs for the construction of the agency’s next-generation particle collider. Musk noted that by using The Boring Company’s tunnels, the project would likely save “several billion Euros.”
Director of CERN asked me about Boring Co building the new LHC tunnel when we were at the @royalsociety. Would probably save several billon Euros.
— Elon Musk (@elonmusk) January 21, 2019
The particle physics laboratory, which operates in a site near Geneva, Switzerland, outlined its plans for the 100-km LHC successor, dubbed as the “Future Circular Collider” (FCC), last Tuesday. The FCC is expected to replace the LHC, whose most notable success so far has been the discovery of the Higgs boson, a previously-theoretical particle that gives mass to all matter. Since the discovery of the Higgs boson in 2012, though, CERN’s Large Hadron Collider has not been able to discover any new particles of the same significance. This, according to Gian Francesco Giudice, CERN’s theory department head, highlights a need to push collider technologies forward.
“Today, exploring the highest possible energies with bold projects is our best hope to crack some of the mysteries of nature at the most fundamental level,” he said, according to Nature.
The possibilities that could be unlocked by a project as ambitious as the Future Circular Collider could easily come from a sci-fi tale. It would not be an exaggeration to state that the FCC would enable physicists to open the door to as-yet-unknown physics, while helping answer a number of notable questions about the universe. First off, the FCC would help CERN scientists study the Higgs boson more extensively — something that is not possible with the LHD. The project is also expected to allow scientists to explore topics such as dark matter and antimatter.
- The size of the FCC compared to the LHD. (Photo: CERN)
- An artist’s image depicting particles colliding. (Photo: CERN)
CERN’s Future Circular Collider is expected to be four times as large and up to six times more powerful than its predecessor. (Photos: CERN)
While the possibilities presented by CERN’s proposed 100-km particle collider are vast, the Future Circular Collider does have its fair share of drawbacks — the most notable of which is the cost of the entire project. CERN’s report on the FCC estimates that the project’s tunnels alone would cost €5 billion ($5.7 billion) to build. Another €4 billion ($4.6 billion) is expected to be required for the first collider (which will collide leptons), while €4 billion ($4.6 billion) would likely be needed for the final collider (which is designed to collide protons). Provided that the ambitious project does not meet any substantial difficulties in its construction, the FCC could be operational by 2040.
This is where The Boring Company’s technologies could come in. The tunneling startup, after all, aims to reduce the costs of tunneling through optimizations in the digging process. So far, The Boring Company is only involved in projects involving transportation, such as the construction of the high-profile downtown Chicago-O’Hare high-speed transport line. The cost savings presented by The Boring Company’s tunnels were particularly evident when Elon Musk revealed the cost of the startup’s mile-long test tunnel in Hawthorne, CA last December. During his presentation, Musk noted that the Hawthorne tunnel cost $10 million to construct. This is far more affordable than traditional tunneling costs, which cost most U.S. local and state governments an average of $200-$500 million dollars per mile.
Granted, the requirements for CERN’s 100-km tunnel would be far more than demanding than the otherwise straightforward tunnels that The Boring Company will construct in the immediate future. That said, the rather generous timeframe for the Future Circular Collider would also give The Boring Company some time to further refine and optimize its tunneling technologies. For now, though, the prospect of CERN’s next-generation LHD’s tunnels being dug by The Boring Company would remain an idea that would only get more plausible over time.
Elon Musk
Starlink achieves major milestones in 2025 progress report
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.
SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.
Key achievements from Starlink’s 2025 Progress
Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.
Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.
Starlink Direct to Cell
Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.
“This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.
News
Tesla Giga Nevada celebrates production of 6 millionth drive unit
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
6 million drive units
The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote.
The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.
Giga Nevada’s essential role
Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.
Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.
News
Tesla Supercharger network delivers record 6.7 TWh in 2025
The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.
Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide.
To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.
Record 6.7 TWh delivered in 2025
The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream.
Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.
This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.
Resilience after Supercharger team changes
2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”
Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.
Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible.

