News
NASA SLS rocket launches Orion spacecraft to the Moon
After years, months, days, hours, and minutes of waiting, NASA’s first Space Launch System (SLS) rocket has successfully lifted off from Kennedy Space Center and sent an Orion spacecraft on its way to the Moon.
Originally projected to launch by late 2016, SLS lifted off for the first time at 1:48 am EST (06:48 UTC) on November 16th, 2022. Once known as Exploration Mission 1 (EM-1), NASA’s SLS debut was renamed “Artemis I” when the Trump administration created the Artemis Program in 2017. By most measures a semi-modernized Apollo Program without a geopolitical race against the Soviet Union, the Artemis Program survived the election of a new president in 2020, and the SLS rocket’s debut has officially become the program’s first major mission to get off the ground.
That SLS rocket has had a very long journey to its first successful launch. Supplied by United Launch Alliance (ULA), the rocket’s small Interim Cryogenic Propulsion Stage (ICPS) – the stage responsible for orbital burns – was delivered to the Kennedy Space Center in November 2017. Boeing shipped the first Core Stage – SLS’ central liquid rocket booster – to Mississippi for proof testing in January 2020, and CS-1 completed that testing in March 2021 and was delivered to Florida by April 2021.

After almost 12 months of painstaking assembly, the first fully-assembled SLS rocket rolled out to Kennedy Space Center Launch Complex 39B (Pad 39B) and attempted its first on-pad wet dress rehearsal (WDR) test. Seven months, three partially-completed WDRs, and two aborted launch attempts later, everything finally came together on November 16th, 2022.
By all appearances, the first SLS launch went perfectly. Shortly before liftoff, SLS ignited four former Space Shuttle Main Engines, making sure they were performing as expected. Seconds later, the launch computer fully committed and ignited both of SLS’ Shuttle-derived solid rocket boosters (SRBs) – motors than cannot be shut down after they’re lit. Much like the Shuttle did, SLS leapt off the pad after SRB ignition.
Combined, NASA says its RS-25 liquid engines and SRBs produced up to 4000 tons (8.8M lbf/39,200 kN) of thrust at liftoff, making SLS the second most powerful rocket to ever leave the launch pad. Only the Soviet Union’s N1 rocket, which produced up to 4500 tons (9.9M lbf/44,100 kN) of thrust at liftoff, was more powerful. But unlike N1, which failed four times over four launch attempts, the first SLS rocket reached orbit as planned, making it the most powerful rocket ever successfully launched.
About two minutes after liftoff, both SRBs successfully separated from the Core Stage. Eight and a half minutes after liftoff, the Core Stage shut down its four RS-25 engines and deployed the ICPS and Orion spacecraft just below the height of a stable orbit. 51 minutes after liftoff, ICPS ignited its lone RL-10 engine for 22 seconds to insert itself and Orion into a stable Earth orbit. Finally, about an hour and forty minutes after liftoff, ICPS ignited for a lengthy 18-minute trans-lunar injection (TLI) burn, sending Orion on a trajectory that will intercept the Moon on November 21st.

If all goes according to plan, Orion will then use its own European Service Module (ESM) to correct its trajectory and enter a Distant Retrograde Orbit around the Moon on November 25th, where it will remain tens of thousands of kilometers above the lunar surface. Orion will then leave lunar orbit as early as December 1st and reenter Earth’s atmosphere on December 11th before the capsule finally splashes down in the ocean.
Assuming Artemis I goes perfectly, Artemis II – SLS and Orion’s first launch with astronauts aboard – is scheduled no earlier than (NET) 2024. Artemis III, which will team up with a modified version of SpaceX’s Starship launch vehicle to attempt to land astronauts on the Moon for the first time since 1972, is expected to follow NET 2025. However, a reliable source with a prophetic track record estimates that Starship and SLS might not be ready to launch Artemis III until 2028.



News
Tesla Model 3 named New Zealand’s best passenger car of 2025
Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.
The refreshed Tesla Model 3 has won the DRIVEN Car Guide AA Insurance NZ Car of the Year 2025 award in the Passenger Car category, beating all traditional and electric rivals.
Judges praised the all-electric sedan’s driving dynamics, value-packed EV tech, and the game-changing addition of Full Self-Driving (Supervised) that went live in New Zealand this September.
Why the Model 3 clinched the crown
DRIVEN admitted they were late to the “Highland” party because the updated sedan arrived in New Zealand as a 2024 model, just before the new Model Y stole the headlines. Yet two things forced a re-evaluation this year.
First, experiencing the new Model Y reminded testers how many big upgrades originated in the Model 3, such as the smoother ride, quieter cabin, ventilated seats, rear touchscreen, and stalk-less minimalist interior. Second, and far more importantly, Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.
FSD changes everything for Kiwi buyers
The publication called the entry-level rear-wheel-drive version “good to drive and represents a lot of EV technology for the money,” but highlighted that FSD elevates it into another league. “Make no mistake, despite the ‘Supervised’ bit in the name that requires you to remain ready to take control, it’s autonomous and very capable in some surprisingly tricky scenarios,” the review stated.
At NZ$11,400, FSD is far from cheap, but Tesla also offers FSD (Supervised) on a $159 monthly subscription, making the tech accessible without the full upfront investment. That’s a game-changer, as it allows users to access the company’s most advanced system without forking over a huge amount of money.
News
Tesla starts rolling out FSD V14.2.1 to AI4 vehicles including Cybertruck
FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out.
It appears that the Tesla AI team burned the midnight oil, allowing them to release FSD V14.2.1 on Thanksgiving. The update has been reported by Tesla owners with AI4 vehicles, as well as Cybertruck owners.
For the Tesla AI team, at least, it appears that work really does not stop.
FSD V14.2.1
Initial posts about FSD V14.2.1 were shared by Tesla owners on social media platform X. As per the Tesla owners, V14.2.1 appears to be a point update that’s designed to polish the features and capacities that have been available in FSD V14. A look at the release notes for FSD V14.2.1, however, shows that an extra line has been added.
“Camera visibility can lead to increased attention monitoring sensitivity.”
Whether this could lead to more drivers being alerted to pay attention to the roads more remains to be seen. This would likely become evident as soon as the first batch of videos from Tesla owners who received V14.21 start sharing their first drive impressions of the update. Despite the update being released on Thanksgiving, it would not be surprising if first impressions videos of FSD V14.2.1 are shared today, just the same.
Rapid FSD releases
What is rather interesting and impressive is the fact that FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out. This bodes well for Tesla’s FSD users, especially since CEO Elon Musk has stated in the past that the V14.2 series will be for “widespread use.”
FSD V14 has so far received numerous positive reviews from Tesla owners, with numerous drivers noting that the system now drives better than most human drivers because it is cautious, confident, and considerate at the same time. The only question now, really, is if the V14.2 series does make it to the company’s wide FSD fleet, which is still populated by numerous HW3 vehicles.
News
Waymo rider data hints that Tesla’s Cybercab strategy might be the smartest, after all
These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.
Toyota Connected Europe designer Karim Dia Toubajie has highlighted a particular trend that became evident in Waymo’s Q3 2025 occupancy stats. As it turned out, 90% of the trips taken by the driverless taxis carried two or fewer passengers.
These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.
Toyota designer observes a trend
Karim Dia Toubajie, Lead Product Designer (Sustainable Mobility) at Toyota Connected Europe, analyzed Waymo’s latest California Public Utilities Commission filings and posted the results on LinkedIn this week.
“90% of robotaxi trips have 2 or less passengers, so why are we using 5-seater vehicles?” Toubajie asked. He continued: “90% of trips have 2 or less people, 75% of trips have 1 or less people.” He accompanied his comments with a graphic showing Waymo’s occupancy rates, which showed 71% of trips having one passenger, 15% of trips having two passengers, 6% of trips having three passengers, 5% of trips having zero passengers, and only 3% of trips having four passengers.
The data excludes operational trips like depot runs or charging, though Toubajie pointed out that most of the time, Waymo’s massive self-driving taxis are really just transporting 1 or 2 people, at times even no passengers at all. “This means that most of the time, the vehicle being used significantly outweighs the needs of the trip,” the Toyota designer wrote in his post.
Cybercab suddenly looks perfectly sized
Toubajie gave a nod to Tesla’s approach. “The Tesla Cybercab announced in 2024, is a 2-seater robotaxi with a 50kWh battery but I still believe this is on the larger side of what’s required for most trips,” he wrote.
With Waymo’s own numbers now proving 90% of demand fits two seats or fewer, the wheel-less, lidar-free Cybercab now looks like the smartest play in the room. The Cybercab is designed to be easy to produce, with CEO Elon Musk commenting that its product line would resemble a consumer electronics factory more than an automotive plant. This means that the Cybercab could saturate the roads quickly once it is deployed.
While the Cybercab will likely take the lion’s share of Tesla’s ride-hailing passengers, the Model 3 sedan and Model Y crossover would be perfect for the remaining 9% of riders who require larger vehicles. This should be easy to implement for Tesla, as the Model Y and Model 3 are both mass-market vehicles.
