News
Rivian’s full self-driving suite is designed to ignore an inattentive driver’s input
Rivian’s CEO RJ Scaringe has teased Jurassic Park-style self-driving tours with the company’s all-electric R1T pickup truck and R1S SUV several times now, but specific details on the car maker’s autonomy approach have been few and far between. Oliver Jeromin, Rivian’s Associate Director of Self-Driving, recently shed some light on the matter during an interview with TechCrunch.
“We want to embrace the challenge,” Jeromin said in response to a question over Rivian’s goal of bringing Level 3 autonomous driving to its vehicles versus other approaches. “There are mobility companies that are working on Level 4, and they’re looking at it kind of from the top down, coming from 4 or 5 for more fleet applications possibly… We want to get a feature into our customers hands sooner than possibly some of those other systems might be fully vetted,” he said.
Rivian’s electric lineup will enable this type of self-driving capability using a suite of cameras, radar, ultrasonic sensors, high-precision GPS technologies, and two cleverly-placed LiDAR. Such features are similar to those found in Tesla’s cars for the same purpose; however, where the two companies differ at the moment is notable. Rivian’s system is being developed to have a two-part monitoring system determining its full self-driving suite’s behavior based on driver input rather than a single requirement for hands to be on the steering wheel.

“We’re building a driver-monitoring system so it’s not just one sensor like a torque input sensor – like if a driver actually wants to disengage the longitudinal and lateral controller,” Jeromin explained. “There going to be a driver-monitoring camera, and there’s also going to be hands-on wheel sensors.”
In other words, Rivian’s full self-driving system will ignore driver input unless it is determined to be intentional. A Level 3 self-driving system can handle most aspects of driving, so if a driver wants their vehicle to behave differently than its programming is carrying out, the car will use the camera and sensors in the cabin to determine whether to proceed. If, say, the wheel is bumped from the driver shifting around in their seat for some reason, the safety procedures will know it was an accident.
“It’s really trying to determine the driver’s intention because if…you inadvertently give the steering input to the steering controller…the driver monitoring camera will see that you’re not looking at the road, and you also don’t have both hands on the wheel,” Jeromin clarified. “So, we’ll have to ignore that input from the human to understand that they’re not intending to change lanes. They’re actually just doing something else while the vehicle is in control.”
Tesla has also installed cameras to monitor activity in vehicle cabins, but the purpose isn’t exactly to monitor the driver’s intentions. Rather, Tesla Network passengers will be recorded to ensure any damages caused can be remedied. “It’s there for when we start competing with Uber/Lyft & people allow their car to earn money for them as part of the Tesla shared autonomy fleet. In case someone messes up your car, you can check the video,” CEO Elon Musk replied on Twitter to a Tesla owner’s inquiry about the tiny camera inside the rear view mirror. “Also, it can be used to supplement cameras on outside of vehicle, as it can see through 2nd side windows & rear window…Only external cameras are being used right now, so internal is not enabled. When it is enabled, we’ll add a setting to disable internal camera.”
As Rivian continues to develop its manufacturing process to bring the R1S and R1T to market, it will be interesting to also see what differences and similarities the car maker will have with other companies working on full self-driving vehicle software. Tesla has billions of miles in Autopilot-driven customer data to use for training of its self-driving program, so perhaps Rivian will eventually share its plan to close the gap.
Watch TechCrunch’s full interview with Rivian’s staff below:
Elon Musk
Tesla owners surpass 8 billion miles driven on FSD Supervised
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account.
Tesla shared the milestone as adoption of the system accelerates across several markets.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.
Elon Musk
The Boring Company’s Music City Loop gains unanimous approval
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.
The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown.
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.
Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.
The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post.
Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.
“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said.
The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.
Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.