Connect with us

News

SpaceX aces 60th orbital launch of 2022

Published

on

SpaceX has completed its 60th orbital launch of 2022, marking the first time the company has fully hit a public cadence target set by one of its executives.

By every possible measure, 2022 has been a groundbreaking year for SpaceX even when considering the vast list of achievements it’s racked up over the last half-decade. It owns and operates the largest satellite constellation in history by an order of magnitude. Its Starlink satellite internet service has secured more than a million subscribers less than two years after entering beta. It operates the only routinely reusable orbital-class rockets and orbital spacecraft currently in service. Its Falcon 9 workhorse has launched more in one year than any other single rocket in history. It’s regularly launching at a pace that hasn’t been sustained by any one country – let alone a single company – in 40 years. It’s managing that near-historic cadence while simultaneously recovering and reusing boosters and fairings that represent some 70% of the value of almost every rocket it launches.

And now, SpaceX can also proudly show that it was able to hit a launch cadence target that seemed impossibly ambitious when CEO Elon Musk first shared it nine months ago.

Exactly nine months later, SpaceX has just completed its 60th launch of 2022. 69 days after its last orbital-class launch, Falcon 9 booster lifted off for the 11th time with a somewhat mysterious batch of 54 Starlink satellites. A bit less than nine minutes after liftoff, B1062 touched down 660 kilometers (410 mi) downrange on SpaceX drone ship A Shortfall Of Gravitas (ASOG). Seconds prior, Falcon 9’s expendable upper stage reached orbit, shut down its lone Merlin Vacuum engine, and began slowly spinning itself end over end.

Nineteen minutes after leaving the ground, the stack of 54 Starlink satellites was released all at once, slowly spreading out like a splayed deck of cards. Over the coming hours, days, and weeks, those satellites will naturally spread out, deploy solar arrays, stabilize their attitudes, test their payloads, and begin climbing toward an operational orbit somewhere between 480 and 580 kilometers (300-360 mi) above Earth’s surface.

Advertisement
-->

As previously discussed, SpaceX’s so-called “Starlink 5-1” mission raises a number of questions that the company’s launch webcast and communications unfortunately failed to answer. First and foremost, the “5-1” name is nonsensical. The only information SpaceX did disclose about the mission is that it’s the “first [launch] of Starlink’s upgraded network…under [a] new license,” implying – but not actually confirming – that “Starlink 5-1” is the first launch for the Starlink Gen2 constellation.

The orbit the launch targeted only matches one of the Gen2 ‘shells’ the US Federal Communications Commission (FCC) recently approved. Using a naming scheme that’s been consistent for a year and a half, “5-1” implies that the mission is the first launch of Starlink Gen1’s fifth ‘shell’ or group, which the orbit it was actually launched to explicitly makes impossible. It’s very odd that SpaceX did not explicitly call the mission what it actually is: the first launch of an entirely new Starlink Gen2 constellation. The name ultimately doesn’t matter much, but is now likely to create confusion given that SpaceX’s Starlink Gen1 constellation has a fifth shell that may begin launches in the near future.

Additionally, outside of a single obscure FCC filing submitted two months ago, it’s long been stated and implied that the Starlink Gen2 constellation’s main advantage over Gen1 was the much larger size of the Gen2/V2 satellites. But the satellites launched on “Starlink 5-1” appear to be virtually identical to all recent Starlink V1.5 satellites, which CEO Elon Musk once suggested were so cost-inefficient that they could risk bankrupting SpaceX in November 2021.

A limited view of Starlink 3-4 and “5-1” satellites suggests they are virtually identical. (SpaceX)

There is one obvious explanation for why SpaceX would launch ordinary Starlink V1.5 satellites in place of the larger V2 variants that will supposedly make the internet constellation more financially sustainable: a desire to add new customers as quickly as possible, no matter the relative cost. While a much smaller V1.5 satellite likely offers around 3-8 times less usable bandwidth than one of the larger V2 variants SpaceX is developing, it may still be true that a V1.5 satellite is better than nothing while larger V2 satellites are stuck behind development delays or waiting on SpaceX’s next-generation Starship rocket.

SpaceX will almost certainly want to replace any V1.5 satellites with V2 satellites when the opportunity arises, but in the meantime, V1.5 satellites launched as part of the Gen2 constellation may technically allow SpaceX to temporarily double the amount of bandwidth available where most people (and Starlink customers) live. Ultimately, that means that it makes a lot of sense for SpaceX to prioritize Gen2 launches. It doesn’t appear that SpaceX will go that far, but the Starlink Gen1 constellation is so far along that the company could easily leave the constellation as-is and prioritize Gen2 Falcon 9 launches for all of 2023 without risking an FCC penalty. SpaceX simply needs to finish its Gen1 constellation before April 2027 to avoid breaking those rules.

Instead, it looks like SpaceX will roughly split its launch and V1.5 satellite manufacturing capacity between Starlink Gen1 and Gen2 moving forward. That will let SpaceX significantly expand bandwidth where most customers live while also finishing the polar-orbiting Gen1 shells that will let the older constellation better serve maritime and aviation subscribers, and reach Starlink’s most remote customers.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading