Connect with us

News

SpaceX’s BFR factory abuzz with work activity and giant rocket tooling

Published

on

A large temporary SpaceX facility intended for initial Mars rocket fabrication was spied abuzz with activity as employees work to assemble massive carbon composite tooling.

Hours after SpaceX CEO Elon Musk revealed the first photos of tooling for the manufacture of BFR, Teslarati photographer Pauline Acalin sped down to Port of San Pedro to survey a large dockside tent the company was constructing as of December 2017. Now complete, the temporary facility appears to be exploding with SpaceX activity as the company surges ahead with plans to assemble the first Mars rocket and spaceship prototypes – rocket-powered hops could begin as soon as early next year, with orbital launches following about a year after that.

Per a number of related discoveries, the tooling pictured in Musk’s teaser is almost certainly located in the same tent pictured above. Of particular note, a source involved in the work has confirmed that SpaceX is using a new supplier for the custom tooling needed to manufacture BFR. The source’s comments were confirmed to be accurate minutes later in photos taken by Teslarati’s senior SpaceX stalker that peg Ascent Aerospace Coast Composites as the tooling manufacturer. As if to dispatch any lingering doubt, Ascent Aerospace appears to have also independently confirmed its involvement through a rare post on social media.

Advertisement
-->

Based on Pauline Acalin’s photos of the previously unexplored SpaceX facility, the company has since filled the tent with a huge amount of hardware, and still more BFR tooling appears to be momentarily stored outside, brandishing the Ascent Aerospace name and logo. These additional components will likely be used in the manufacture of the less cylindrical segments of SpaceX’s Mars spaceship, among other possible uses. In essence, SpaceX will need to build monolithic carbon composite structures that can readily survive extreme temperatures, pressure differentials, supercool rocket propellant, significant G-loading, and much more. To a much lesser extent, this type of aerospace construction is already done on a large scale – Boeing’s 787 Dreamliner uses a significant amount of carbon composite in its fuselage and is around 6 meters in diameter to BFR/BFS’ 9m. As a beneficial consequence of such significant commercial interest in massive carbon composite structures, markets have grown to support the existence of a thriving niche of composite innovation and tooling production, maturing the technology and making the task far easier for SpaceX compared to developing tooling and processes from a blank sheet.

Given the surprising level of activity at this BFR-focused facility, it is fair to conclude that SpaceX is wasting no time at all with the production of its first full-scale BFR prototypes. Altogether, the tent factory is gradually being filled to the brim with custom carbon composite tooling capable of fabricating Mars spaceship and booster structures, propellant tanks, delta winglets, and more. It’s no coincidence that this tent (and the prospective factory at Berth 240) were both located at Port of San Pedro – once completed, it should be comparatively easy to ship the massive components to SpaceX’s Texas or Florida facilities, both of which have been hinted as possible locations for BFR testing (and launches, eventually).

Follow us for live updates, behind-the-scenes sneak peeks, and a sea of beautiful photos from our East and West coast photographers.

Teslarati   –   Instagram Twitter

Advertisement
-->

Tom CrossTwitter

Pauline Acalin  Twitter

Eric Ralph Twitter

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times,” Tesla stated. “The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory.”

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The upgrade follows earlier phases of Tesla’s self-funded shuttle program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff rely on public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow non-employees to ride the shuttle free of charge, making it a broader mobility option for the region as the site’s output and workforce continue to scale.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading