News
SpaceX competitor Blue Origin targets first Moon landing for 2023
Prospective SpaceX competitor and reusable rocket developer Blue Origin detailed its plans earlier this month to enable significant human presence on the Moon and announced a tentative schedule that could see the company begin experimental lunar landing tests of a multi-ton spacecraft just a few years from today – NET 2023.
Funded entirely with stock sales courtesy of founder Jeff Bezos’ lucrative position at the helm of Amazon (not to mention his status as the wealthiest human alive), Blue Origin receives roughly $1 billion annually to develop its space tourism-oriented New Shepard rocket and capsule (suborbital), the magnitudes-larger orbital New Glenn launch vehicle, and a number of other longer-term projects like human colonies in Earth orbit (including the Moon).
In answer to my question, @ac_charania said would evolve to reusable Blue Moon lander. Also under consideration is reusable New Glenn upper stage & faring. https://t.co/Dg3UTN9HU5
— Charles A. Lurio (@TheLurioReport) July 4, 2018
Think SpaceX in terms of ambition (and, perhaps, quality of workforce) but with essentially no existential motivation to field products quickly – framed a bit less flatteringly, Blue Origin moves very slowly when compared with SpaceX. The company was born a full two years before SpaceX and has been working on reusable rockets for at least as long, yet has less than ten launches of a genuinely reusable rocket to claim its own. That rocket, New Shepard, is a purely suborbital, single-stage vehicle intended to enable zero-gee tourism, and is downright minuscule when examined alongside Falcon 9 and Heavy.
- Blue Origin’s BE-4 engine, the propulsion for New Glenn, seen conducting hot-fire tests in Texas. The engine’s nozzles is a full 6 feet (~1.8m) in diameter. (Blue Origin)
- New Shepard ahead of Blue Origin’s most recent suborbital launch, the eighth completed so far. April 2018. (Blue Origin)
New Glenn, however, would truly catapult Blue Origin into a competitive position in the orbital launch business, placing them alongside companies like SpaceX, ULA, and Arianespace. Further, Blue appears to believe that it can design and produce New Glenn boosters capable of as many as 25 flights from the get-go, versus the three years SpaceX spent iteratively design and upgrading its Falcon 9 before arriving at a booster potentially capable of 10-100 reuses. New Glenn’s inaugural launch is currently scheduled for late 2020, and the impressive BE-4 methalox rocket engine powering its first stage is well into serious hot-fire testing, while the engine that will power New Glenn’s upper stage is already successfully flying (albeit as a sea-level variant) on New Shepard.
In a glance, Blue Origin undoubtedly has a lot going for it, although its confidence quite plainly outstrips its the achievements it can actually lay claim to at present. Nevertheless, the company’s Blue Moon project is clearly serious and will build heavily on the (hoped for) successes of New Shepard and New Glenn, integrating the hands-on experience and technologies developed over the course of building and launching both rockets. Presumably depending on New Glenn as the launch vehicle, Blue Origin stated on July 3 that its lunar lander – designed to deliver multiple tons of cargo to the Moon’s surface – could begin experimental Moon missions by 2023 and potentially even sooner if work proceeds exceptionally smoothly.
- Blue Origin’s New Glenn rocket. (Blue Origin)
- SpaceX’s BFR. (Gravitation Innovation/David Romax)
- Credit: NASA-MSFC
- Arianespace’s next-generation Ariane 6. (Arianespace)
- ULA’s upcoming Vulcan rocket. (ULA)
Whether or not Blue Origin manages to make that extraordinarily aggressive scheduled and jumps from suborbital missions to giant orbital reusable rocket launches to multi-ton Moon landings in barely five years, the 2020s are lining up to be an extraordinarily exciting time for spaceflight. With any luck, a veritable fleet of next-generation rockets from Blue Origin, SpaceX, Arianespace, ULA, NASA, Japan, and five or more smaller commercial companies will complete their first launches over the next three years.
Meanwhile, heavyweights SpaceX and Blue Origin may find themselves in a whole different arena, racing to land payloads on the Moon (or perhaps on the Moon and Mars).
News
Tesla exec pleads for federal framework of autonomy to U.S. Senate Committee
Tesla executive Lars Moravy appeared today in front of the U.S. Senate Commerce Committee to highlight the importance of modernizing autonomy standards by establishing a federal framework that would reward innovation and keep the country on pace with foreign rivals.
Moravy, who is Tesla’s Vice President of Vehicle Engineering, strongly advocated for Congress to enact a national framework for autonomous vehicle development and deployment, replacing the current patchwork of state-by-state rules.
These rules have slowed progress and kept companies fighting tooth-and-nail with local legislators to operate self-driving projects in controlled areas.
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
Moravy said the new federal framework was essential for the U.S. to “maintain its position in global technological development and grow its advanced manufacturing capabilities.
He also said in a warning to the committee that outdated regulations and approval processes would “inhibit the industry’s ability to innovate,” which could potentially lead to falling behind China.
Being part of the company leading the charge in terms of autonomous vehicle development in the U.S., Moravy highlighted Tesla’s prowess through the development of the Full Self-Driving platform. Tesla vehicles with FSD engaged average 5.1 million miles before a major collision, which outpaces that of the human driver average of roughly 699,000 miles.
Moravy also highlighted the widely cited NHTSA statistic that states that roughly 94 percent of crashes stem from human error, positioning autonomous vehicles as a path to dramatically reduce fatalities and injuries.
🚨 Tesla VP of Vehicle Engineering, Lars Moravy, appeared today before the U.S. Senate Commerce Committee to discuss the importance of outlining an efficient framework for autonomous vehicles:
— TESLARATI (@Teslarati) February 4, 2026
Skeptics sometimes point to cybersecurity concerns within self-driving vehicles, which was something that was highlighted during the Senate Commerce Committee hearing, but Moravy said, “No one has ever been able to take over control of our vehicles.”
This level of security is thanks to a core-embedded central layer, which is inaccessible from external connections. Additionally, Tesla utilizes a dual cryptographic signature from two separate individuals, keeping security high.
Moravy also dove into Tesla’s commitment to inclusive mobility by stating, “We are committed with our future products and Robotaxis to provide accessible transportation to everyone.” This has been a major point of optimism for AVs because it could help the disabled, physically incapable, the elderly, and the blind have consistent transportation.
Overall, Moravy’s testimony blended urgency about geopolitical competition, especially China, with concrete safety statistics and a vision of the advantages autonomy could bring for everyone, not only in the U.S., but around the world, as well.
News
Tesla Model Y lineup expansion signals an uncomfortable reality for consumers
Tesla launched a new configuration of the Model Y this week, bringing more complexity to its lineup of the vehicle and adding a new, lower entry point for those who require an All-Wheel-Drive car.
However, the broadening of the Model Y lineup in the United States could signal a somewhat uncomfortable reality for Tesla fans and car buyers, who have been vocal about their desire for a larger, full-size SUV.
Tesla has essentially moved in the opposite direction through its closure of the Model X and its continuing expansion of a vehicle that fits the bill for many, but not all.
Tesla brings closure to Model Y moniker with launch of new trim level
While CEO Elon Musk has said that there is the potential for the Model Y L, a longer wheelbase configuration of the vehicle, to enter the U.S. market late this year, it is not a guarantee.
Instead, Tesla has prioritized the need to develop vehicles and trim levels that cater to the future rollout of the Robotaxi ride-hailing service and a fully autonomous future.
But the company could be missing out on a massive opportunity, as SUVs are a widely popular body style in the U.S., especially for families, as the tighter confines of compact SUVs do not support the needs of a large family.
Although there are other companies out there that manufacture this body style, many are interested in sticking with Tesla because of the excellent self-driving platform, expansive charging infrastructure, and software performance the vehicles offer.
Additionally, the lack of variety from an aesthetic and feature standpoint has caused a bit of monotony throughout the Model Y lineup. Although Premium options are available, those three configurations only differ in terms of range and performance, at least for the most part, and the differences are not substantial.
Minor Expansions of the Model Y Fail to Address Family Needs for Space
Offering similar trim levels with slight differences to cater to each consumer’s needs is important. However, these vehicles keep a constant: cargo space and seating capacity.
Larger families need something that would compete with vehicles like the Chevrolet Tahoe, Ford Expedition, or Cadillac Escalade, and while the Model X was its largest offering, that is going away.
Tesla could fix this issue partially with the rollout of the Model Y L in the U.S., but only if it plans to continue offering various Model Y vehicles and expanding on its offerings with that car specifically. There have been hints toward a Cyber-inspired SUV in the past, but those hints do not seem to be a drastic focus of the company, given its autonomy mission.
Model Y Expansion Doesn’t Boost Performance, Value, or Space
You can throw all the different badges, powertrains, and range ratings on the same vehicle, it does not mean it’s going to sell better. The Model Y was already the best-selling vehicle in the world on several occasions. Adding more configurations seems to be milking it.
The true need of people, especially now that the Model X is going away, is going to be space. What vehicle fits the bill of a growing family, or one that has already outgrown the Model Y?
Not Expanding the Lineup with a New Vehicle Could Be a Missed Opportunity
The U.S. is the world’s largest market for three-row SUVs, yet Tesla’s focus on tweaking the existing Model Y ignores this. This could potentially result in the Osborne Effect, as sales of current models without capturing new customers who need more seating and versatility.
Expansions of the current Model Y offerings risk adding production complexity without addressing core demands, and given that the Model Y L is already being produced in China, it seems like it would be a reasonable decision to build a similar line in Texas.
Listening to consumers means introducing either the Model Y L here, or bringing a new, modern design to the lineup in the form of a full-size SUV.
Elon Musk
Elon Musk reiterates Tesla Optimus’ most sci-fi potential yet
Musk shared his comments in a series of posts on social media platform X.
Elon Musk recently reiterated one of the most ambitious forecasts for Tesla’s humanoid robot, Optimus, stating it could become the first real-world example of a Von Neumann machine. He also noted once more that Optimus would be Tesla’s biggest product.
Musk shared his comments in a series of posts on social media platform X.
Optimus as a von Neumann machine
In response to a post on X that pondered on sci-fi timelines becoming real, Musk wrote that “Optimus will be the first Von Neumann machine, capable of building civilization by itself on any viable planet.” In a separate post, Musk wrote that Optimus will be Tesla’s “biggest product ever,” a phrase he has used in the past to describe the humanoid robot’s importance to the electric vehicle maker.
A Von Neumann machine is a class of theoretical self-replicating systems originally proposed in the mid-20th century by the mathematician John von Neumann. In his concept, von Neumann described machines that could travel to other worlds, use local materials to create copies of themselves, and carry out large-scale tasks without outside intervention.
Elon Musk’s broader plans
Considering Musk’s comments, it appears that Optimus would eventually be capable of performing complex work autonomously in environments beyond Earth. If Optimus could achieve such a feat, it could very well unlock humanity’s capability to explore locations beyond Earth. The idea of space exploration becomes more than feasible.
Elon Musk has discussed space-based AI compute, large-scale robotic production, and the role of SpaceX’s Starship in transporting hardware and materials to other planets. While Musk did not detail how Optimus would fit with SpaceX’s exploration activities, his Von Neumann machine comments suggest he is looking at Tesla’s robotics as part of a potential interplanetary ecosystem.






