News
SpaceX Crew Dragon, four astronauts set for brief flight around the space station
To set the stage for another Dragon launch just a few weeks from now, NASA astronauts are preparing to board a SpaceX Crew Dragon for a brief flight around the International Space Station (ISS).
Orbiting roughly 400 km (250 mi) above the Earth’s surface, the ISS and its crew of seven international astronauts have just two docking ports available to manage a growing influx of SpaceX Crew and Cargo Dragon 2 spacecraft, as well as Boeing’s chronically delayed Starliner. While Starliner hasn’t flown since a near-catastrophic orbital debut in December 2019 and isn’t likely to reattempt that uncrewed flight test until the second half of 2021, SpaceX is in the exact opposite position as it prepares to sustain an unprecedented Dragon launch cadence.
One challenge of that cadence ramp – space station port logistics and availability – is now becoming clear as SpaceX nears its next Crew Dragon NASA astronaut launch.

All launched on SpaceX Cargo Dragons, including a third destroyed during Falcon 9’s CRS-7 launch failure, the International Space Station has just two perpendicular International Docking Adapter (IDA) ports – one facing space and the other facing Earth. Regardless of CRS-7’s lost port, that IDA duo was always NASA’s plan.
The ISS requires the use of a huge, robotic arm (Canadarm2) to unload unpressurized cargo from spacecraft and that arm doesn’t have the mobility to access vehicles docked to the Earth-facing IDA port, meaning that cargo spacecraft with IDA ports can really only dock on the space-facing port. Cargo Dragon 2’s use of IDA docking and the Cygnus spacecraft’s use of berthing thankfully mean that neither NASA Commercial Resupply Services 2 (CRS2) vehicle is at risk of a traffic jam.


Sierra Nevada Corporation (SNC) is set to debut the cargo variant of its Dream Chaser spaceplane as early as 2022 for annual launches and will need to share that same lone IDA port with Cargo Dragon for its (approximately) annual resupply missions. More importantly, though, Crew Dragon and Boeing’s Starliner both require the use of one of those two IDA ports to deliver astronauts to and from the ISS. Both spacecraft are also expected to leave with the same crew that launched on them, meaning that both will spend a fully six or so months in orbit on each crew rotation mission.
In general, NASA also plans to overlap all Commercial Crew Program (CCP) astronaut launches, meaning that Crew Dragon will wait for Starliner to arrive (and vice versa) before departing the ISS with its four-astronaut crew. Those use-cases and safety requirements combine to create strict, complex scheduling challenges that mean a Cargo Dragon or Dream Chaser can never be docked to the ISS during a crew handover, while also adding significant constraints to any planned private astronaut (tourist) missions to the station – of which SpaceX already has at least one.


In the meantime, though Boeing’s Starliner is now at least 18 months behind SpaceX’s Crew Dragon on the path to launching NASA astronauts to and from the ISS, SpaceX is picking up the slack to the extent that station ‘traffic’ conditions are practically unaffected. Whereas NASA’s nominal plan was to alternate between its two redundant Commercial Crew providers before Boeing ran into huge delays, SpaceX is on track to launch Crew Dragon’s Crew-2 astronaut ferry mission as early as April 22nd.
The flight-proven Demo-2 Dragon will then rendezvous with the ISS while Crew-1’s Dragon and four astronauts are still aboard the station. Crew-1 and Crew-2 will spend about a week together before the former group boards their Dragon and heads for home. As few as six or so weeks later, SpaceX could launch its second Cargo Dragon 2 resupply mission, known as CRS-22. – This morning’s “port relocation,” which will see the Crew-1 Dragon will ‘relocate’ from the station’s Earth-facing IDA to its space-facing port, is thus necessary to free up that port for Cargo Dragon’s arrival when Crew-1 departs.
Barring major delays, SpaceX is currently on track to complete another two Crew and Cargo Dragon launches in 2-3 months, marking four Dragon missions in seven months if all goes to plan. Another three Dragon missions are firmly scheduled in 2021, potentially making for seven Dragon launches in 11-12 months if schedules hold. SpaceX’s current record – technically achieved twice in 2018 and 2019 – is five orbital Dragon missions in 12 months.
Tune in below around 6am EDT (UTC-4) to catch Crew Dragon C207’s brief 46-minute jaunt around the International Space Station (ISS) – a first for an American crewed spacecraft of any kind.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.