Connect with us

News

SpaceX Crew Dragon switches ports to make room for Boeing’s Starliner do-over

Published

on

Update: For the second time, a SpaceX Crew Dragon spacecraft has successfully swapped International Space Station (ISS) docking ports in orbit – this time to make way for Boeing’s planned Starliner Orbital Test Flight do-over.

If Starliner’s second orbital flight test is more successful than the first, which failed almost immediately after launch, the Boeing spacecraft will launch no earlier than July 30th, rendezvous and dock with the ISS, and spend approximately five days at the station before attempting to return to Earth. Once Starliner departs, freeing up the forward docking port, SpaceX and NASA will likely have to perform a second Crew-2 port relocation, moving Dragon back to its original port to set the stage for the CRS-23 Cargo Dragon resupply mission scheduled in late August.

SpaceX and NASA are on track for the Crew-2 Dragon spacecraft currently docked to the International Space Station (ISS) to perform a “port relocation” maneuver early Wednesday, effectively opening the door for Boeing’s Starliner flight test do-over.

Scheduled to launch on a United Launch Alliance (ULA) Atlas V rocket no earlier than (NET) July 30th, Boeing’s Starliner will be flying for the first time since the spacecraft’s near-catastrophic Orbital Flight Test (OFT) debut in December 2019. During Starliner’s inaugural test flight, a combination of inept Boeing software development, shoddy quality control, and inexplicably lax NASA oversight allowed the spacecraft to launch with inoperable software.

As a result, things went wrong mere seconds after Atlas V – which performed nominally – deployed Starliner. Almost as simple as using the wrong clock, the first software fault – something that would have been instantly caught with even the most rudimentary integrated systems test – caused Starliner to think it was in a different part of the OFT mission and waste much of its fuel with thousands of unnecessary thruster firings.

Advertisement

Aside from pushing Starliner’s maneuvering thrusters beyond their design limits, those unplanned and unexpected misfirings also threw the spacecraft off course, obfuscating Boeing and NASA’s ability to communicate and command the spacecraft and troubleshoot the situation at hand. Eventually, the company regained control of Starliner, but not before it had burned through most of its propellant reserves – precluding plans for to rendezvous and dock with the ISS.

Less than three hours before reentry, Boeing also uncovered a separate thruster-related software issue that could have caused the Starliner capsule to lose stability and re-impact its expendable trunk section after separation.

Ultimately, with so many issues and a failure to gather any kind of data related to operations at and around the ISS, NASA thankfully forced Boeing to plan to repeat OFT with Orbital Flight Test 2 (OFT-2). Scheduled to launch in December 2020 as of the second half of that year, OFT-2 ultimately slipped – both for scheduling and technical reasons – to March, June, and finally July 30th, 2021.

Crew Dragon C207 became the first US spacecraft to switch ISS ports in April 2021. (NASA)

More than 19 months after Starliner’s ill-fated debut, NASA and Boeing are now almost ready for the spacecraft’s critical do-over. For unknown reasons, though, NASA and/or Boeing apparently need (or prefer) Starliner to use a specific docking port – the same port SpaceX’s second operational Crew Dragon spacecraft is currently docked to. According to NASA and Boeing, Starliner needs to use that forward docking port because it has not been qualified for zenith docking, which is a bit more complex. As a result, SpaceX and NASA have scheduled a port relocation maneuver around 7am EDT (UTC-4) on Wednesday, July 21st.

SpaceX’s first relocation occurred in early April to prepare for the arrival of a second Crew Dragon later that month. When Crew-1 Dragon departed a few weeks after the maneuver, it would leave the station’s zenith (space-facing) port free for a Cargo Dragon 2 spacecraft scheduled to arrive around one month later. Due to the station’s geometry and port layout, only the zenith port allows its robotic Canadarm2 arm to unload unpressurized cargo from Dragon’s trunk.

Already at the forward port, the Crew-2 Dragon will thus be moving to the zenith port for Starliner’s brief 1-2 week stay at the ISS. However, as may have become clear, Crew Dragon will then have to re-relocate to the forward port for any future Cargo Dragon missions – one of which happens to be scheduled to launch with an important unpressurized payload as early as August 29th.

Advertisement

Regardless of why, it’s hard to ever complain about seeing Dragons fly. Tune in around 6:30 am EDT (10:30 UTC) to watch Crew Dragon C206 maneuver around an orbital space station.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla CEO Elon Musk trolls budget airline after it refuses Starlink on its planes

“I really want to put a Ryan in charge of Ryan Air. It is your destiny,” Musk said.

Published

on

elon musk ryanair

Tesla CEO Elon Musk trolled budget airline Ryanair on his social media platform X this week following the company’s refusal to adopt Starlink internet on its planes.

Earlier this week, it was reported that Ryanair did not plan to install Starlink internet services on its planes due to its budgetary nature and short flight spans, which are commonly only an hour or so in total duration.

Initially, Musk said installing Starlink on the company’s planes would not impact cost or aerodynamics, but Ryanair responded on its X account, which is comical in nature, by stating that a propaganda it would not fall for was “Wi-Fi on planes.”

Musk responded by asking, “How much would it cost to buy you?” Then followed up with the idea of buying the company and replacing the CEO with someone named Ryan:

Polymarket now states that there is an 8 percent chance that Musk will purchase Ryanair, which would cost Musk roughly $36 billion, based on recent financial data of the public company.

Although the banter has certainly crossed a line, it does not seem as if there is any true reason to believe Musk would purchase the airline. More than anything, it seems like an exercise of who will go further.

Starlink passes 9 million active customers just weeks after hitting 8 million

However, it is worth noting that if something is important enough, Musk will get involved. He bought Twitter a few years ago and then turned it into X, but that issue was much larger than simple banter with a company that does not want to utilize one of the CEO’s products.

In a poll posted yesterday by Musk, asking whether he should buy Ryanair and “restore Ryan as their rightful ruler.” 76.5 percent of respondents said he should, but others believe that the whole idea is just playful dialogue for now.

But it is not ideal to count Musk out, especially if things continue to move in the direction they have been.

Continue Reading

News

Tesla Robotaxi’s biggest rival sends latest statement with big expansion

The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.

Published

on

Credit: @AdanGuajardo/X

Tesla Robotaxi’s biggest rival sent its latest statement earlier this month by making a big expansion to its geofence, pushing the limits up by over 50 percent and nearing Tesla’s size.

Waymo announced earlier this month that it was expanding its geofence in Austin by slightly over 50 percent, now servicing an area of 140 square miles, over the previous 90 square miles that it has been operating in since July 2025.

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.

These rides are fully driverless, which sets them apart from Tesla slightly. Tesla operates its Robotaxi program in Austin with a Safety Monitor in the passenger’s seat on local roads and in the driver’s seat for highway routes.

It has also tested fully driverless Robotaxi services internally in recent weeks, hoping to remove Safety Monitors in the near future, after hoping to do so by the end of 2025.

Although Waymo’s geofence has expanded considerably, it still falls short of Tesla’s by roughly 31 square miles, as the company’s expansion back in late 2025 put it up to roughly 171 square miles.

There are several differences between the two operations apart from the size of the geofence and the fact that Waymo is able to operate autonomously.

Waymo emphasizes mature, fully autonomous operations in a denser but smaller area, while Tesla focuses on more extensive coverage and fleet scaling potential, especially with the potential release of Cybercab and a recently reached milestone of 200 Robotaxis in its fleet across Austin and the Bay Area.

However, the two companies are striving to achieve the same goal, which is expanding the availability of driverless ride-sharing options across the United States, starting with large cities like Austin and the San Francisco Bay Area. Waymo also operates in other cities, like Las Vegas, Los Angeles, Orlando, Phoenix, and Atlanta, among others.

Tesla is working to expand to more cities as well, and is hoping to launch in Miami, Houston, Phoenix, Las Vegas, and Dallas.

Continue Reading

Elon Musk

Tesla automotive will be forgotten, but not in a bad way: investor

It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.

Published

on

(Credit: Tesla)

Entrepreneur and Angel investor Jason Calacanis believes that Tesla will one day be only a shade of how it is recognized now, as its automotive side will essentially be forgotten, but not in a bad way.

It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.

I subscribed to Tesla Full Self-Driving after four free months: here’s why

Eventually, and even now, the focus has been on real-world AI and Robotics, both through the Full Self-Driving and autonomy projects that Tesla has been working on, as well as the Optimus program, which is what Calacanis believes will be the big disruptor of the company’s automotive division.

On the All-In podcast, Calcanis revealed he had visited Tesla’s Optimus lab earlier this month, where he was able to review the Optimus Gen 3 prototype and watch teams of engineers chip away at developing what CEO Elon Musk has said will be the big product that will drive the company even further into the next few decades.

Calacanis said:

“Nobody will remember that Tesla ever made a car. They will only remember the Optimus.”

He added that Musk “is going to make a billion of those.”

Musk has stated this point himself, too. He at one point said that he predicted that “Optimus will be the biggest product of all-time by far. Nothing will even be close. I think it’ll be 10 times bigger than the next biggest product ever made.”

He has also indicated that he believes 80 percent of Tesla’s value will be Optimus.

Optimus aims to totally revolutionize the way people live, and Musk has said that working will be optional due to its presence. Tesla’s hopes for Optimus truly show a crystal clear image of the future and what could be possible with humanoid robots and AI.

Continue Reading