News
SpaceX Crew Dragon switches ports to make room for Boeing’s Starliner do-over
Update: For the second time, a SpaceX Crew Dragon spacecraft has successfully swapped International Space Station (ISS) docking ports in orbit – this time to make way for Boeing’s planned Starliner Orbital Test Flight do-over.
If Starliner’s second orbital flight test is more successful than the first, which failed almost immediately after launch, the Boeing spacecraft will launch no earlier than July 30th, rendezvous and dock with the ISS, and spend approximately five days at the station before attempting to return to Earth. Once Starliner departs, freeing up the forward docking port, SpaceX and NASA will likely have to perform a second Crew-2 port relocation, moving Dragon back to its original port to set the stage for the CRS-23 Cargo Dragon resupply mission scheduled in late August.
SpaceX and NASA are on track for the Crew-2 Dragon spacecraft currently docked to the International Space Station (ISS) to perform a “port relocation” maneuver early Wednesday, effectively opening the door for Boeing’s Starliner flight test do-over.
Scheduled to launch on a United Launch Alliance (ULA) Atlas V rocket no earlier than (NET) July 30th, Boeing’s Starliner will be flying for the first time since the spacecraft’s near-catastrophic Orbital Flight Test (OFT) debut in December 2019. During Starliner’s inaugural test flight, a combination of inept Boeing software development, shoddy quality control, and inexplicably lax NASA oversight allowed the spacecraft to launch with inoperable software.
As a result, things went wrong mere seconds after Atlas V – which performed nominally – deployed Starliner. Almost as simple as using the wrong clock, the first software fault – something that would have been instantly caught with even the most rudimentary integrated systems test – caused Starliner to think it was in a different part of the OFT mission and waste much of its fuel with thousands of unnecessary thruster firings.
Aside from pushing Starliner’s maneuvering thrusters beyond their design limits, those unplanned and unexpected misfirings also threw the spacecraft off course, obfuscating Boeing and NASA’s ability to communicate and command the spacecraft and troubleshoot the situation at hand. Eventually, the company regained control of Starliner, but not before it had burned through most of its propellant reserves – precluding plans for to rendezvous and dock with the ISS.
Less than three hours before reentry, Boeing also uncovered a separate thruster-related software issue that could have caused the Starliner capsule to lose stability and re-impact its expendable trunk section after separation.
Ultimately, with so many issues and a failure to gather any kind of data related to operations at and around the ISS, NASA thankfully forced Boeing to plan to repeat OFT with Orbital Flight Test 2 (OFT-2). Scheduled to launch in December 2020 as of the second half of that year, OFT-2 ultimately slipped – both for scheduling and technical reasons – to March, June, and finally July 30th, 2021.

More than 19 months after Starliner’s ill-fated debut, NASA and Boeing are now almost ready for the spacecraft’s critical do-over. For unknown reasons, though, NASA and/or Boeing apparently need (or prefer) Starliner to use a specific docking port – the same port SpaceX’s second operational Crew Dragon spacecraft is currently docked to. According to NASA and Boeing, Starliner needs to use that forward docking port because it has not been qualified for zenith docking, which is a bit more complex. As a result, SpaceX and NASA have scheduled a port relocation maneuver around 7am EDT (UTC-4) on Wednesday, July 21st.
SpaceX’s first relocation occurred in early April to prepare for the arrival of a second Crew Dragon later that month. When Crew-1 Dragon departed a few weeks after the maneuver, it would leave the station’s zenith (space-facing) port free for a Cargo Dragon 2 spacecraft scheduled to arrive around one month later. Due to the station’s geometry and port layout, only the zenith port allows its robotic Canadarm2 arm to unload unpressurized cargo from Dragon’s trunk.
Already at the forward port, the Crew-2 Dragon will thus be moving to the zenith port for Starliner’s brief 1-2 week stay at the ISS. However, as may have become clear, Crew Dragon will then have to re-relocate to the forward port for any future Cargo Dragon missions – one of which happens to be scheduled to launch with an important unpressurized payload as early as August 29th.
Regardless of why, it’s hard to ever complain about seeing Dragons fly. Tune in around 6:30 am EDT (10:30 UTC) to watch Crew Dragon C206 maneuver around an orbital space station.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.