Connect with us

News

SpaceX delivers largest commercial satellite in kick off of Falcon 9 marathon

Published

on

SpaceX has successfully completed its 13th launch of 2018, kicking off a marathon of three new Falcon 9 Block 5 booster debuts with the launch of the Telstar 19V communications satellite, potentially breaking the record for the largest commercial satellite ever launched at 7000 kg (15,500 lb).

Despite the heft of its payload and partially thanks to a slightly lower parking orbit for the satellite, Falcon 9 booster B1047 – the second Block 5 booster to roll off the assembly line – managed to successfully land aboard the autonomous spaceport drone ship (ASDS) Of Course I Still Love You (OCISLY), stationed approximately 650 km (400 mi) off the Florida coast at launch time.

While the booster was unable to maintain a live video feed through its high-speed reentry and Atlantic landing, SpaceX’s cameras on OCISLY managed to reconnect a few seconds after touchdown to show the 50-meter (160-foot) tall rocket safely resting on the drone ship. As the webcast host noted, Falcon 9 Block 5 features a number of prominent upgrades designed to enable levels of reusability and reliability essentially unprecedented in the world of orbital rocketry.

Rocket trials

Now more than two months after the first Block 5 booster’s – B1046 – debut in May 2018, the software engineer hosting SpaceX’s Telstar 19V webcast was likely speaking more from a place of experience than of hope. Per CEO Elon Musk’s press call just prior to Block 5’s debut, he noted that SpaceX intended to conduct an extensive analysis of that pathfinder booster, including significant disassembly and perhaps some limited destructive testing of certain critical or high-risk components. Musk didn’t expect B1046 to fly for at least another “couple of months”.

Advertisement

This is critical because SpaceX’s manifest over the next several weeks is fairly aggressive – Iridium-7 is scheduled to lift off from Vandenberg, CA three days from today (July 25th), the next Florida launch is aiming for a static fire next weekend and a launch NET 1:19 am EDT August 2, and the second imminent Florida mission is penciled in for launch NET 11:35 pm EDT August 17. Those rapid-fire Florida launches will push both SpaceX’s pad and drone ship turnaround capabilities to their limits, requiring almost non-stop work to ensure both are available for the next mission in two weeks or less.

Not to be (at least relatively) one-upped, SpaceX’s Vandenberg launch pad – known as SLC-4E – is scheduled to push its own turnaround limits by flying two missions in roughly 40 days, just shy of the current SpaceX record of 36 days between launches. Perhaps more excitingly, that September 4 SAOCOM 1A mission looks like a prime candidate for the debut of SpaceX’s yet-unused Californian landing zone, barely spitting distance from the SLC-4E launch pad.

Still, the question remains: what boosters are going to launch these four missions?

  • B1051 is not believed to have left the Hawthorne, CA factory yet, and has been stated by NASA to be reserved for the first uncrewed Crew Dragon mission (DM-1), unlikely to occur before Q4 2018.
  • B1050 is currently on-stand in McGregor, TX and is likely to be shipped to a launch pad within a week or two.
  • B1049 was almost certainly shipped to Florida to support either of the two upcoming August launches.
  • B1048 will launch Iridium-7 on July 25, land on Just Read The Instructions, and likely remain in California for future VAFB missions.
  • B1047 just successfully launched Telstar 19V (July 22) and will be brought back to Port Canaveral over the next several days before heading to one of SpaceX’s Florida refurbishment facilities, presumably to prepare for an imminent future launch.
  • B1046 is likely disassembled in Hawthorne, CA, unable to support a launch for another few weeks – perhaps it’s nearly ready, however

 

Three Falcon 9 boosters captured in various states of transport and testing over the last six weeks, two of which are B1047 and B1048. (Teslarati/Tesla Motors Club/Reddit/Facebook)

 

Put simply, it seems almost impossible for SpaceX to accomplish its ambitious manifest over the next 4-6 weeks without reusing a freshly-recovered Falcon 9 Block 5 booster. B1046 is a possibility, as is B1047 or B1048, although the latter two options would smash SpaceX’s previous record for Falcon booster turnaround (~70 days) by more than half, requiring  in a return to shore, refurbishment or nondestructive analysis, and preparation for a static fire in as few as ~14-21 days.

Advertisement

Regardless, B1047’s successful Telstar 19V launch and landing have kicked off what is bound to be an extremely exciting period for SpaceX and its aspirations of highly-reusable rocketry.

Follow us for live updates, peeks behind the scenes, and photos from Teslarati’s East and West Coast photographers

Teslarati   –   Instagram Twitter

Tom CrossTwitter

Advertisement

Pauline Acalin  Twitter

Eric Ralph Twitter

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla owners surpass 8 billion miles driven on FSD Supervised

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account. 

Tesla shared the milestone as adoption of the system accelerates across several markets.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading