Connect with us

SpaceX

SpaceX snags second Falcon 9 booster in two weeks after Crew Dragon launch

Falcon 9 B1051 returned to Port Canaveral for the first time aboard drone ship Of Course I Still Love You on March 5th. (Pauline Acalin)

Published

on

SpaceX and the company’s drone ship Of Course I Still Love You (OCISLY) have successfully wrapped up their second Falcon 9 recovery in less than two weeks, bringing booster B1051 back to Port Canaveral to be broken over and refurbished for a second launch.

Following its support of Crew Dragon’s thus far flawless launch debut, the booster will likely be exceptionally easy to turn around for its next flight. That second launch could occur as early as late April for Cargo Dragon’s 17th mission, a consequence of NASA’s desire to keep its SpaceX missions on boosters that are ‘in family‘ (i.e. only new boosters or flight-proven boosters that have only launched NASA payloads).

https://twitter.com/_TomCross_/status/1102944003358687232

Although B1051’s reentry profile was relatively slow and gentle with main engine cut-off (MECO) and booster separation occurring at ~1.9 km/s (4250 mph) and 85 km (53 mi), its recovery was made intriguingly difficult by high seas at drone ship OCISLY’s Atlantic Ocean station. These bad conditions were readily visible at several points during SpaceX’s DM-1 livestream, with OCISLY heeling several degrees as the Falcon 9 booster’s Merlin 1D engine lit up the surrounding area like a floodlight. In fact, B1051’s post-landing struggle could actually be seen live as the booster clearly slide several meters across the drone ship’s deck almost immediately after touching down.

This issue of boosters sliding about and generally being difficult to deal with is actually one of the leading motivations that lead to SpaceX developing Octagrabber, a tank-like robot used to remotely secure recovery Falcon 9 first stages while minimizing the risk to the recovery team. In a situation like DM-1, with B1051 already sliding around OCISLY’s deck immediately after a night landing, Octagrabber would nominally be remotely activated and controlled, crawling from its garage to grab Falcon 9’s hold-down clamps and secure the stage with its own weight.

It’s actually unclear whether Octagrabber is capable of this sort of remote operation without SpaceX technicians aboard OCISLY, nor if SpaceX – as of late – has even tried to attempt to secure Falcon 9 boosters at night. The process of transferring crew between ships in heavy seas is actually quite dangerous on its own, so it would be less than surprising to hear that SpaceX’s recovery managers have cut down on nighttime operations in bad weather if Octagrabber can only be operated with crew present on OCISLY. For B1051, the drone ship, a tugboat, and crew boat GO Quest remained in the vicinity of the landing target until the following morning (still March 2nd) before beginning the ~500 km (~300 mi) trek back to Port Canaveral. Greeted by moody low-hanging clouds and scattered showers, observers were actually able to capture the rare sight – as pictured above – of Octagrabber being driven back into its blast shield/garage.

Regardless, future Commercial Crew launches – aside, perhaps, from SpaceX’s second demonstration launch (DM-2) later this year – will likely be able perform return-to-launch-site (RTLS) landings at the company’s Florida landing zones, much like Falcon 9 boosters already do after Cargo Dragon (CRS) missions. According to VP of Mission Assurance Hans Koenigsmann, B1051 had to conduct a drone ship (ASDS) recovery at sea due to NASA’s desire for conservative performance reserves to guard against the potential (and extremely unlikely) failure of one or several Merlin engines during the launch’s boost stage. In 2012, Falcon 9 suffered its first and only (known) in-flight Merlin failure, an anomaly which the rocket’s autonomously avionics perfectly dealt with to save the primary mission (Cargo Dragon’s operational debut, CRS-1). A secondary Orbcomm communications satellite sadly failed to make it to its operational orbit, however, classifying the mission as a partial failure. More recently, there have been unconfirmed hints pointing to other potential in-flight Merlin 1D failures, albeit during booster recovery attempts instead of the main boost phase. Whether or not those anomalies actually occurred, NASA is clearly all about extreme conservatism and ‘safety first’ approaches for the Commercial Crew Program (or at least SpaceX’s side of it).

SpaceX’s successful recovery of B1051 marks the company’s third launch and landing of 2019, thus far averaging a relatively slow one mission per month. While schedules can change, it currently appears that Crew Dragon’s DM-1 orbital debut will be the only SpaceX launch in March, barring Falcon Heavy’s own commercial debut occurring in the last few days of the month. According to a SpaceX representative speaking earlier this year, the company is actually aiming to equal or even surpass its 2018 record – 21 launches – in 2019, requiring a minimum average of two launches per month for the remainder of the year.

Numbers aside, SpaceX’s 2019 calendar will undoubtedly aim to surpass the number of major company milestones in a single year, a hard act to follow after 2017 and 2018. Ranging from the first operational Starlink satellite launches and the first SpaceX launch with astronauts aboard to major flight test and developmental milestones for the company’s next-gen Starship spaceship and Super Heavy booster, there are an incredible wealth of events to look forward to.

Advertisement
-->

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX shades airline for seeking contract with Amazon’s Starlink rival

Published

on

Credit: Richard Angle

SpaceX employees, including its CEO Elon Musk, shaded American Airlines on social media this past weekend due to the company’s reported talks with Amazon’s Starlink rival, Leo.

Starlink has been adopted by several airlines, including United Airlines, Qatar Airways, Hawaiian Airlines, WestJet, Air France, airBaltic, and others. It has gained notoriety as an extremely solid, dependable, and reliable option for airline travel, as traditional options frequently cause users to lose connection to the internet.

Many airlines have made the switch, while others continue to mull the options available to them. American Airlines is one of them.

A report from Bloomberg indicates the airline is thinking of going with a Starlink rival owned by Amazon, called Leo. It was previously referred to as Project Kuiper.

American CEO Robert Isom said (via Bloomberg):

“While there’s Starlink, there are other low-Earth-orbit satellite opportunities that we can look at. We’re making sure that American is going to have what our customers need.”

Isom also said American has been in touch with Amazon about installing Leo on its aircraft, but he would not reveal the status of any discussions with the company.

The report caught the attention of Michael Nicolls, the Vice President of Starlink Engineering at SpaceX, who said:

“Only fly on airlines with good connectivity… and only one source of good connectivity at the moment…”

CEO Elon Musk replied to Nicolls by stating that American Airlines risks losing “a lot of customers if their connectivity solution fails.”

There are over 8,000 Starlink satellites in orbit currently, offering internet coverage in over 150 countries and territories globally. SpaceX expands its array of satellites nearly every week with launches from California and Florida, aiming to offer internet access to everyone across the globe.

SpaceX successfully launches 100th Starlink mission of 2025

Currently, the company is focusing on expanding into new markets, such as Africa and Asia.

Continue Reading

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Continue Reading

Investor's Corner

SpaceX IPO is coming, CEO Elon Musk confirms

However, it appears Musk is ready for SpaceX to go public, as Ars Technica Senior Space Editor Eric Berger wrote an op-ed that indicated he thought SpaceX would go public soon. Musk replied, basically confirming it.

Published

on

elon musk side profile
Joel Kowsky, Public domain, via Wikimedia Commons

Elon Musk confirmed through a post on X that a SpaceX initial public offering (IPO) is on the way after hinting at it several times earlier this year.

It also comes one day after Bloomberg reported that SpaceX was aiming for a valuation of $1.5 trillion, adding that it wanted to raise $30 billion.

Musk has been transparent for most of the year that he wanted to try to figure out a way to get Tesla shareholders to invest in SpaceX, giving them access to the stock.

He has also recognized the issues of having a public stock, like litigation exposure, quarterly reporting pressures, and other inconveniences.

However, it appears Musk is ready for SpaceX to go public, as Ars Technica Senior Space Editor Eric Berger wrote an op-ed that indicated he thought SpaceX would go public soon.

Musk replied, basically confirming it:

Berger believes the IPO would help support the need for $30 billion or more in capital needed to fund AI integration projects, such as space-based data centers and lunar satellite factories. Musk confirmed recently that SpaceX “will be doing” data centers in orbit.

AI appears to be a “key part” of SpaceX getting to Musk, Berger also wrote. When writing about whether or not Optimus is a viable project and product for the company, he says that none of that matters. Musk thinks it is, and that’s all that matters.

It seems like Musk has certainly mulled something this big for a very long time, and the idea of taking SpaceX public is not just likely; it is necessary for the company to get to Mars.

The details of when SpaceX will finally hit that public status are not known. Many of the reports that came out over the past few days indicate it would happen in 2026, so sooner rather than later.

But there are a lot of things on Musk’s plate early next year, especially with Cybercab production, the potential launch of Unsupervised Full Self-Driving, and the Roadster unveiling, all planned for Q1.

Continue Reading