Connect with us

News

SpaceX Falcon rocket aces 100th consecutive rocket landing

Published

on

SpaceX has successfully launched its first batch of next-generation Starlink V2 satellites, likely kicking off a new era of affordability for the constellation.

Simultaneously, demonstrating just how far SpaceX is ahead of its competitors and the rest of the spacefaring world, the Starlink 6-1 launch culminated in the 100th consecutively successful landing of a Falcon rocket booster. As a result, SpaceX’s landing reliability now rivals the launch reliability of some of the most reliable rockets ever flown. That extraordinary feat bodes well for SpaceX’s next-generation Starship rocket, which is designed to propulsively land humans on the Earth, Moon, Mars, and beyond.

SpaceX’s landing reliability milestone is made all the more impressive by the lack of immediate competition. More than seven years after SpaceX’s first successful Falcon 9 booster landing and six years after the company’s first successful Falcon booster reuse, Falcon 9 and Falcon Heavy are still the only reusable orbital-class rockets in operation.

Blue Origin has had some success reusing the first stage of its suborbital New Shepard rocket. Rocket Lab has also recovered small Electron rocket boosters from the ocean, but it’s yet to catch a booster with a helicopter – a necessity for cost-effective reuse. Many other companies have announced or begun developing their own partially or fully-reusable rockets. But even in a best-case scenario, the most promising of those potentially competitive rockets are still a year or two from their first launch attempts, let alone their first successful recoveries and reuses.

SpaceX debuted the Falcon 9 rocket behind most of its successful booster recoveries and reuses in June 2010. SpaceX recovered a Falcon 9 booster for the first time in December 2015 and reused a (different) booster for the first time in March 2017. It completed nearly all of that risky development work during launches for paying customers.

Advertisement
-->

Even after the first success, many unsuccessful landing attempts followed as SpaceX pushed the performance envelope and discovered new failure modes. Falcon’s most recent landing failure occurred during a Starlink launch in February 2021 and was caused by a hole in a flexible ‘skirt’ meant to keep Earth’s superheated atmosphere out of the flight-proven booster’s engine section.

However, every landing since Falcon 9’s Starlink-19 landing failure has been successful. On February 27th, 2023, almost exactly two years after that failure, Falcon 9 booster B1076 touched down on one of SpaceX’s three drone ships, marking the rocket family’s 100th consecutively successful landing. Starlink 6-1 was also the Falcon family’s 183rd consecutively successful launch, as a Falcon landing failure has never prevented the completion of a mission’s primary objective.

Launch-wise, Falcon 9 and the Falcon family have already become the most statistically reliable rockets in history. Very few rockets in history have managed 100 consecutively successful launches, let alone landings. For example, according to spaceflight reporter Alejandro Romera, the next most reliable American rocket – the McDonnell Douglas Delta II – narrowly achieved 100 consecutively successful launches before its retirement in 2018. The landing reliability of SpaceX’s Falcon rockets is thus tied with the launch reliability of the most reliable American rocket not built by SpaceX.

Additionally, SpaceX Falcon booster landings are now statistically more reliable than the launches of United Launch Alliance’s much-touted Atlas V rocket, which has (more or less) successfully launched 97 times.

Compared to Falcon 9, Starship is 70% taller, 240% wider, 800% more capable, 900% heavier, 1000% more powerful, and fully – instead of partially – reusable.

Falcon’s landing reliability is an encouraging sign for SpaceX’s next-generation Starship rocket. For Starship to fully achieve SpaceX’s goals, it will eventually need to be able to propulsively land humans on Earth and at other destinations throughout the solar system. SpaceX currently has no plans no plans to develop an independent crew escape system for Starship, meaning that the rocket itself will instead have to demonstrate extraordinary overall reliability. SpaceX executives have stated that Starship will only be deemed safe enough to launch humans once it has completed “hundreds” of successful launches and, presumably, landings.

Falcon has managed 100 successful landings in a row despite large gaps in redundancy. Most landing burns are conducted with a single Merlin 1D engine. Any issue with that engine would likely result in a failed landing. Falcon boosters also have four landing legs and four grid fins powered by a single hydraulic pump. The failure of that pump or one of four legs have demonstrably doomed earlier landings.

Advertisement
-->

Starship’s much larger size and excess performance could provide a larger margin for error and allow for more redundancy. But Falcon has demonstrated that that even a rocket with multiple glaring single-points-of-failure can achieve 100 consecutively successful landings.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla adds 15th automaker to Supercharger access in 2025

Published

on

tesla supercharger
Credit: Tesla

Tesla has added the 15th automaker to the growing list of companies whose EVs can utilize the Supercharger Network this year, as BMW is the latest company to gain access to the largest charging infrastructure in the world.

BMW became the 15th company in 2025 to gain Tesla Supercharger access, after the company confirmed to its EV owners that they could use any of the more than 25,000 Supercharging stalls in North America.

Newer BMW all-electric cars, like the i4, i5, i7, and iX, are able to utilize Tesla’s V3 and V4 Superchargers. These are the exact model years, via the BMW Blog:

  • i4: 2022-2026 model years
  • i5: 2024-2025 model years
    • 2026 i5 (eDrive40 and xDrive40) after software update in Spring 2026
  • i7: 2023-2026 model years
  • iX: 2022-2025 model years
    • 2026 iX (all versions) after software update in Spring 2026

With the expansion of the companies that gained access in 2025 to the Tesla Supercharger Network, a vast majority of non-Tesla EVs are able to use the charging stalls to gain range in their cars.

So far in 2025, Tesla has enabled Supercharger access to:

  • Audi
  • BMW
  • Genesis
  • Honda
  • Hyundai
  • Jaguar Land Rover
  • Kia
  • Lucid
  • Mercedes-Benz
  • Nissan
  • Polestar
  • Subaru
  • Toyota
  • Volkswagen
  • Volvo

Drivers with BMW EVs who wish to charge at Tesla Superchargers must use an NACS-to-CCS1 adapter. In Q2 2026, BMW plans to release its official adapter, but there are third-party options available in the meantime.

They will also have to use the Tesla App to enable Supercharging access to determine rates and availability. It is a relatively seamless process.

Continue Reading

News

Tesla adds new feature that will be great for crowded parking situations

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

Published

on

Credit: Grok

Tesla has added a new feature that will be great for crowded parking lots, congested parking garages, or other confusing times when you cannot seem to pinpoint where your car went.

Tesla has added a new Vehicle Locator feature to the Tesla App with App Update v4.51.5.

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

While there are several new features, which we will reveal later in this article, perhaps one of the coolest is that of the Vehicle Locator, which will now point you in the direction of your car using a directional arrow on the home screen. This is similar to what Apple uses to find devices:

In real time, the arrow gives an accurate depiction of which direction you should walk in to find your car. This seems extremely helpful in large parking lots or unfamiliar shopping centers.

Getting to your car after a sporting event is an event all in itself; this feature will undoubtedly help with it:

Tesla’s previous app versions revealed the address at which you could locate your car, which was great if you parked on the street in a city setting. It was also possible to use the map within the app to locate your car.

However, this new feature gives a more definitive location for your car and helps with the navigation to it, instead of potentially walking randomly.

It also reveals the distance you are from your car, which is a big plus.

Along with this new addition, Tesla added Photobooth features, Dog Mode Live Activity, Custom Wraps and Tints for Colorizer, and Dashcam Clip details.

All in all, this App update was pretty robust.

Continue Reading

Elon Musk

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

Published

on

Credit: Tesla

Tesla CEO Elon Musk shaded Waymo in a post on X on Wednesday, stating the company “never really had a chance” and that it “will be obvious in hindsight.”

Tesla and Waymo are the two primary contributors to the self-driving efforts in the United States, with both operating driverless ride-hailing services in the country. Tesla does have a Safety Monitor present in its vehicles in Austin, Texas, and someone in the driver’s seat in its Bay Area operation.

Musk says the Austin operation will be completely void of any Safety Monitors by the end of the year.

With the two companies being the main members of the driverless movement in the U.S., there is certainly a rivalry. The two have sparred back and forth with their geofences, or service areas, in both Austin and the Bay Area.

While that is a metric for comparison now, ultimately, it will not matter in the coming years, as the two companies will likely operate in a similar fashion.

Waymo has geared its business toward larger cities, and Tesla has said that its self-driving efforts will expand to every single one of its vehicles in any location globally. This is where the true difference between the two lies, along with the fact that Tesla uses its own vehicles, while Waymo has several models in its lineup from different manufacturers.

The two also have different ideas on how to solve self-driving, as Tesla uses a vision-only approach. Waymo relies on several things, including LiDAR, which Musk once called “a fool’s errand.”

This is where Tesla sets itself apart from the competition, and Musk highlighted the company’s position against Waymo.

Jeff Dean, the Chief Scientist for Google DeepMind, said on X:

“I don’t think Tesla has anywhere near the volume of rider-only autonomous miles that Waymo has (96M for Waymo, as of today). The safety data is quite compelling for Waymo, as well.”

Musk replied:

“Waymo never really had a chance against Tesla. This will be obvious in hindsight.”

Tesla stands to have a much larger fleet of vehicles in the coming years if it chooses to activate Robotaxi services with all passenger vehicles. A simple Over-the-Air update will activate this capability, while Waymo would likely be confined to the vehicles it commissions as Robotaxis.

Continue Reading