Connect with us

News

SpaceX's next launch ready to go just weeks after in-flight engine failure

SpaceX is just a week away from its seventh launch of the year, set to lift off just weeks after the company suffered its first in-flight engine failure since 2012. (Richard Angle)

Published

on

Just weeks after SpaceX suffered its first in-flight rocket engine failure since 2012, the company has scheduled its next launch on April 16th.

Set to lift off no earlier than (NET) 5:31 pm EDT (21:31 UTC) from NASA Kennedy Space Center (KSC) Launch Complex 39A (Pad 39A), the mission will be SpaceX’s seventh dedicated launch of 60 Starlink satellites. Known as Starlink-6 in reference to the sixth launch of finalized Starlink v1.0 spacecraft, a successful mission could leave SpaceX with some ~410 operational satellites in orbit – significantly more than twice as big as the next largest constellation.

More importantly, Starlink-6 will mark a sort of return-to-flight for Falcon 9 after booster B1048 suffered an in-flight engine failure and missed its landing attempt on March 18th. While the booster was able to sacrifice itself to ensure that the overall Starlink-5 mission was a success, any in-flight failure is still a significant event in aerospace. To that end, very little is known about the Starlink-5 anomaly, aside from announcements that both NASA and the US Air Force will be paying close attention to the results of SpaceX’s internal investigation. Starlink-6’s imminent launch is now the latest piece of that puzzle, shedding some welcome light on the situation.

Just weeks after Falcon 9 B1048 suffered SpaceX’s first in-flight engine failure in almost eight years, the company is ready for its next launch. (Richard Angle)

Unsurprisingly, an in-flight Falcon 9 engine failure more than piqued the curiosities of high-profile SpaceX customers like NASA and the US Air Force (and Space Force), both of which have some of the company’s most important launches ever scheduled within the next few months. Most notably, NASA noted on March 25th that the space agency and SpaceX “are holding the current mid-to-late May [target for Crew Dragon’s inaugural astronaut launch] and [will] adjust the date based on review of the [engine failure] data, if appropriate.”

At time of comment, a few aspects of the unfortunate Starlink-5 engine failure were already positioned in SpaceX’s favor. Critically, it was the first time that a flight-proven Falcon 9 booster launched on its fifth orbital-class mission, meaning that the very same booster – B1048 – had already launched four times prior. In aerospace parlance, the mission thus served as a pathfinder for SpaceX’s reusable rocketry technology, venturing into new territory. Since it began internal Starlink launches, SpaceX has used those opportunities to take its most recent reusability leaps without risking customer payloads in the process.

SpaceX completed its first Starlink launch on May 23rd, flying B1049 for the third time. SpaceX's next Starlink launch will very likely mark the first time a booster has flown four orbital-class missions. (SpaceX)
Assigned to SpaceX’s Starlink v0.9 mission, Falcon 9 B1049 became the first booster to launch and land four times in May 2019. (SpaceX)
Marking the second use of a flight-proven payload fairing and first time booster attempted to launch and land for the fifth time, B1048 also tested the limits during a Starlink mission. (Richard Angle)

At least for now, neither NASA or the USAF have plans to fly their most valuable payloads on flight-proven Falcon boosters. While that may change over the next several years, it means that SpaceX’s Starlink-5 anomaly and missions like Crew Dragon Demo-2 and GPS III SV03 – both set to fly on new boosters – share much less commonality. Of course, this assumes that B1048’s March 18th engine failure is directly related to the booster’s exceptionally flight-proven nature. Were SpaceX’s investigation to conclude that the fault had nothing to do with multi-launch wear and tear, it would likely ground Falcon 9 and Falcon Heavy indefinitely.

Despite a relatively hard landing after its third launch, Falcon 9 booster B1051 is scheduled to fly its fourth mission – Starlink-6 – just 79 days later. (Richard Angle)

Instead, SpaceX – knowing full-well the potential consequences of two consecutive in-flight failures – has decided to attempt another orbital-class Starlink launch and booster landing less than a month after Starlink-5. To be clear, while SpaceX could choose to throw caution to the wind on an internal launch, it’s doubtful that it would haphazardly take such a substantial risk. Instead, Starlink-6’s April 16th launch date strongly suggests that SpaceX is already reasonably confident that it’s both determined the likely culprit of last month’s engine failure and identified ways to prevent its reoccurrence.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model 3 gets perfect 5-star Euro NCAP safety rating

Tesla prides itself on producing some of the safest vehicles on the road today.

Published

on

Credit: Tesla Singapore/X

Tesla prides itself on producing some of the safest vehicles on the road today. Based on recent findings from the Euro NCAP, the 2025 Model 3 sedan continues this tradition, with the vehicle earning a 5-star overall safety rating from the agency.

Standout Safety Features

As could be seen on the Euro NCAP’s official website, the 2025 Model 3 achieved an overall score of 90% for Adult Occupants, 93% for Child Occupants, 89% for Vulnerable Road Users, and 87% for Safety Assist. This rating, as per the Euro NCAP, applies to the Model 3 Rear Wheel Drive, Long Range Rear Wheel Drive, Long Range All Wheel Drive, and Performance All Wheel Drive.

The Euro NCAP highlighted a number of the Model 3’s safety features, such as its Active Hood, which automatically lifts during collisions to mitigate injury risks to vulnerable road users, and Automatic Emergency Braking System, which now detects motorcycles through an upgraded algorithm. The Euro NCAP also mentioned the Model 3’s feature that prevents initial door opening if someone is approaching the vehicle’s blind spot.

Standout Safety Features

In a post on its official Tesla Europe & Middle East account, Tesla noted that the company is also introducing new features that make the Model 3 even safer than it is today. These include functions like head-on collision avoidance and crossing traffic AEB, as well as Child Left Alone Detection, among other safety features.

“We also introduced new features to improve Safety Assist functionality even further – like head-on collision avoidance & crossing traffic AEB – to detect & respond to potential hazards faster, helping avoid accidents in the first place. 

Advertisement

“Lastly, we released Child Left Alone Detection – if an unattended child is detected, the vehicle will turn on HVAC & alert caregivers via phone app & the vehicle itself (flashing lights/audible alert). Because we’re using novel in-cabin radar sensing, your Tesla is able to distinguish between adult vs child – reduced annoyance to adults, yet critical safety feature for kids,” Tesla wrote in its post on X.

Below is the Euro NCAP’s safety report on the 2025 Tesla Model 3 sedan.

Euroncap 2025 Tesla Model 3 Datasheet by Simon Alvarez on Scribd

Continue Reading

Elon Musk

USDOT Secretary visits Tesla Giga Texas, hints at national autonomous vehicle standards

The Transportation Secretary also toured the factory’s production lines and spoke with CEO Elon Musk.

Published

on

Credit: Elon Musk/X

United States Department of Transportation (USDOT) Secretary Sean Duffy recently visited Tesla’s Gigafactory Texas complex, where he toured the factory’s production lines and spoke with CEO Elon Musk. In a video posted following his Giga Texas visit, Duffy noted that he believes there should be a national standard for autonomous vehicles in the United States.

Duffy’s Giga Texas Visit

As could be seen in videos of his Giga Texas visit, the Transportation Secretary seemed to appreciate the work Tesla has been doing to put the United States in the forefront of innovation. “Tesla is one of the many companies helping our country reach new heights. USDOT will be right there all the way to make sure Americans stay safe,” Duffy wrote in a post on X. 

He also praised Tesla for its autonomous vehicle program, highlighting that “We need American companies to keep innovating so we can outcompete the rest of the world.”

National Standard

While speaking with Tesla CEO Elon Musk, the Transportation Secretary stated that other autonomous ride-hailing companies have been lobbying for a national standard for self-driving cars. Musk shared the sentiment, stating that “It’d be wonderful for the United States to have a national set of rules for autonomous driving as opposed to 50 independent sets of rules on a state-by-state rules basis.”

Duffy agreed with the CEO’s point, stating that, “You can’t have 50 different rules for 50 different states. You need one standard.” He also noted that the Transportation Department has asked autonomous vehicle companies to submit data. By doing so, the USDOT could develop a standard for the entire United States, allowing self-driving cars to operate in a manner that is natural and safe.

Advertisement
Continue Reading

News

Tesla posts Optimus’ most impressive video demonstration yet

The humanoid robot was able to complete all the tasks through a single neural network.

Published

on

Credit: Tesla Optimus/X

When Elon Musk spoke with CNBC’s David Faber in an interview at Giga Texas, he reiterated the idea that Optimus will be one of Tesla’s biggest products. Seemingly to highlight the CEO’s point, the official Tesla Optimus account on social media platform X shared what could very well be the most impressive demonstration of the humanoid robot’s capabilities to date.

Optimus’ Newest Demonstration

In its recent video demonstration, the Tesla Optimus team featured the humanoid robot performing a variety of tasks. These include household chores such as throwing the trash, using a broom and a vacuum cleaner, tearing a paper towel, stirring a pot of food, opening a cabinet, and closing a curtain, among others. The video also featured Optimus picking up a Model X fore link and placing it on a dolly.

What was most notable in the Tesla Optimus team’s demonstration was the fact that the humanoid robot was able to complete all the tasks through a single neural network. The robot’s actions were also learned directly from Optimus being fed data from first-person videos of humans performing similar tasks. This system should pave the way for Optimus to learn and refine new skills quickly and reliably.

Tesla VP for Optimus Shares Insight

In a follow-up post on X, Tesla Vice President of Optimus (Tesla Bot) Milan Kovac stated that one of the team’s goals is to have Optimus learn straight from internet videos of humans performing tasks, including footage captured in third person or by random cameras.

“We recently had a significant breakthrough along that journey, and can now transfer a big chunk of the learning directly from human videos to the bots (1st person views for now). This allows us to bootstrap new tasks much faster compared to teleoperated bot data alone (heavier operationally).

Advertisement

“Many new skills are emerging through this process, are called for via natural language (voice/text), and are run by a single neural network on the bot (multi-tasking). Next: expand to 3rd person video transfer (aka random internet), and push reliability via self-play (RL) in the real-, and/or synthetic- (sim / world models) world,” Kovac wrote in his post on X.

Continue Reading

Trending